SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Immunology in the medical area) ;pers:(Karpman Diana)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Immunology in the medical area) > Karpman Diana

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ragnarsdottir, Bryndis, et al. (författare)
  • TLR- and CXCR1-dependent innate immunity: insights into the genetics of urinary tract infections.
  • 2008
  • Ingår i: European Journal of Clinical Investigation. - : Wiley. - 0014-2972 .- 1365-2362. ; 38 Suppl 2, s. 12-20
  • Forskningsöversikt (refereegranskat)abstract
    • The susceptibility to urinary tract infection (UTI) is controlled by the innate immune response and Toll like receptors (TLRs) are the sentinels of this response. If productive, TLR4 signalling may initiate the symptomatic disease process. In the absence of TLR4 signalling the infected host instead develops an asymptomatic carrier state. The activation of mucosal TLR4 is also influenced by the properties of the infecting strain, and pathogens use their virulence factors to trigger 'pathogen-specific' TLR4 responses in the urinary tract but do not respond to the asymptomatic carrier strains in patients with asymptomatic bacteriuria (ABU). The TLR4 dependence has been demonstrated in mice and the relevance of low TLR4 function for protection for human disease was recently confirmed in children with asymptomatic bacteriuria, who expressed less TLR4 than age matched controls. Functional chemokines and functional chemokine receptors are crucial for neutrophil recruitment, and for the neutrophil dependent bacterial clearance. Interleukin (IL)-8 receptor deficient mice develop acute septic infections and chronic tissue damage, due to aberrant neutrophil function. This mechanism is relevant for human UTI as pyelonephritis prone children express low levels of the human CXCL8 (Il-8) receptor, CXC chemokine receptor 1 (CXCR1) and often have heterozygous CXCR1 polymorphisms. This review illustrates how intimately the innate response and the susceptibility to UTI are linked and sophisticated recognition mechanisms that rely on microbial virulence and on host TLR4 and CXCR1 signalling.
  •  
2.
  • Vaziri-Sani, Fariba, et al. (författare)
  • Phenotypic expression of factor H mutations in patients with atypical hemolytic uremic syndrome
  • 2006
  • Ingår i: Kidney International. - : Nature Publishing Group. - 0085-2538 .- 1523-1755. ; 69:6, s. 981-988
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the phenotypic expression of factor H mutations in two patients with atypical hemolytic uremic syndrome (HUS). Factor H in serum was assayed by rocket immunoelectrophoresis, immunoblotting, and double immunodiffusion and in tissue by immunohistochemistry. Functional activity was analyzed by hemolysis of sheep erythrocytes and binding to endothelial cells. A homozygous mutation in complement control protein (CCP) domain 10 of factor H was identified in an adult man who first developed membranoproliferative glomerulonephritis and later HUS. C3 levels were very low. The patient had undetectable factor H levels in serum and a weak factor H 150 kDa band. Double immunodiffusion showed partial antigenic identity with factor H in normal serum owing to the presence of factor H-like protein 1. Strong specific labeling for factor H was detected in glomerular endothelium, mesangium and in glomerular and tubular epithelium as well as in bone marrow cells. A heterozygous mutation in CCP 20 of factor H was found in a girl with HUS. C3 levels were moderately decreased at onset. Factor H levels were normal and a normal 150 kDa band was present. Double immunodiffusion showed antigenic identity with normal factor H. Factor H labeling was minimal in the renal cortex. Factor H dysfunction was demonstrated by increased sheep erythrocyte hemolysis and decreased binding to endothelial cells. In summary, two different factor H mutations associated with HUS were examined: in one, factor H accumulated in cells, and in the other, membrane binding was reduced.
  •  
3.
  • Karpman, D, et al. (författare)
  • Platelet activation in hemolytic uremic syndrome
  • 2006
  • Ingår i: Seminars in Thrombosis and Hemostasis. - : Georg Thieme Verlag. - 0094-6176 .- 1098-9064. ; 32:2, s. 128-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet consumption in platelet-fibrin aggregates leading to thrombocytopenia and small vessel obstruction are major features of the hemolytic uremic syndrome (HUS). Although thrombocytopenia has been correlated to poor prognosis, the mechanisms by which thrombocytopenia develops in HUS have not been completely elucidated. However, plausible explanations have been platelet contact with thrombogenic surfaces and/or direct contact with an aggregating agent. This article summarizes several mechanisms of platelet activation, interactions with leukocytes, chemokine release, complement activation, and antimicrobial defense. Specific mechanisms are outlined by which platelets may be activated, leading to thrombocytopenia during HUS. In diarrhea-associated HUS Shiga toxin has been shown to injure the endothelium, thus exposing the subendothelium, releasing tissue factor, and rendering the vessel wall prothrombotic. Shiga toxin also binds to and activates platelets. The toxin may activate endothelial cells and platelets simultaneously. In atypical HUS the alternative complement pathway is activated because of mutations in complement regulatory proteins. Mutated factor H does not bind to endothelium and platelets efficiently, enabling complement activation on these cells. In thrombotic thrombocytopenic purpura, intravascular platelet clotting Occurs due to dysfunction of the von Willebrand factor (VWF)-cleaving protease ADAMTS13. Thrombi are formed by binding of platelets to ultralarge VWF multimers.
  •  
4.
  •  
5.
  •  
6.
  • Sartz, Lisa, et al. (författare)
  • A novel C3 mutation causing increased formation of the C3 convertase in familial atypical hemolytic uremic syndrome.
  • 2012
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 188:4, s. 2030-2037
  • Forskningsöversikt (refereegranskat)abstract
    • Atypical hemolytic uremic syndrome has been associated with dysregulation of the alternative complement pathway. In this study, a novel heterozygous C3 mutation was identified in a factor B-binding region in exon 41, V1636A (4973 T > C). The mutation was found in three family members affected with late-onset atypical hemolytic uremic syndrome and symptoms of glomerulonephritis. All three patients exhibited increased complement activation detected by decreased C3 levels and glomerular C3 deposits. Platelets from two of the patients had C3 and C9 deposits on the cell surface. Patient sera exhibited more C3 cleavage and higher levels of C3a. The C3 mutation resulted in increased C3 binding to factor B and increased net formation of the C3 convertase, even after decay induced by decay-accelerating factor and factor H, as assayed by surface plasmon resonance. Patient sera incubated with washed human platelets induced more C3 and C9 deposition on the cell surface in comparison with normal sera. More C3a was released into serum over time when washed platelets were exposed to patient sera. Results regarding C3 and C9 deposition on washed platelets were confirmed using purified patient C3 in C3-depleted serum. The results indicated enhanced convertase formation leading to increased complement activation on cell surfaces. Previously described C3 mutations showed loss of function with regard to C3 binding to complement regulators. To our knowledge, this study presents the first known C3 mutation inducing increased formation of the C3 convertase, thus explaining enhanced activation of the alternative pathway of complement.
  •  
7.
  • Frendeus, Björn, et al. (författare)
  • Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart
  • 2000
  • Ingår i: Journal of Experimental Medicine. - 1540-9538. ; 192:6, s. 881-890
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils migrate to infected mucosal sites that they protect against invading pathogens. Their interaction with the epithelial barrier is controlled by CXC chemokines and by their receptors. This study examined the change in susceptibility to urinary tract infection (UTI) after deletion of the murine interleukin 8 receptor homologue (mIL-8Rh). Experimental UTIs in control mice stimulated an epithelial chemokine response and increased chemokine receptor expression. Neutrophils migrated through the tissues to the epithelial barrier that they crossed into the lumen, and the mice developed pyuria. In mIL-8Rh knockout (KO) mice, the chemokine response was intact, but the epithelial cells failed to express IL-8R, and neutrophils accumulated in the tissues. The KO mice were unable to clear bacteria from kidneys and bladders and developed bacteremia and symptoms of systemic disease, but control mice were fully resistant to infection. The experimental UTI model demonstrated that IL-8R-dependent mechanisms control the urinary tract defense, and that neutrophils are essential host effector cells. Patients prone to acute pyelonephritis also showed low CXC chemokine receptor 1 expression compared with age-matched controls, suggesting that chemokine receptor expression may also influence the susceptibility to UTIs in humans. The results provide a first molecular clue to disease susceptibility of patients prone to acute pyelonephritis.
  •  
8.
  • Svanborg, Catharina, et al. (författare)
  • The 'innate' host response protects and damages the infected urinary tract
  • 2001
  • Ingår i: Annals of Medicine. - 1365-2060. ; 33:9, s. 563-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Symptoms of infection and tissue pathology are caused by the host response; not by the microbe per se. The same response is also critical for the defence and is needed to clear infection. It is therefore essential to understand how the host response is activated and to identify the critical effector mechanisms of the defence. We have studied these issues in the urinary tract infection (UTI) model. The symptoms of UTI and the host defence both rely on the so-called 'innate' immune system, making this one of the best characterized human disease models of 'innate immunity. We discuss the critical molecular events that determine whether the host response will be activated by P-fimbriated uropathogenic Escherichia coli as well as factors determining whether the patient develops acute pyelonephritis or asymptomatic bacteriuria. We will describe the glycoconjugate receptors used by the P-fimbriated bacteria adhering to host tissues, the recruitment of TLR4 co-receptors and the signalling pathways that allow progression to symptomatic disease, and discuss how these mechanisms are altered in asymptomatic carriers, presenting the possible genetic basis for unresponsiveness. We have shown that neutrophils are the critical effectors of the host defence and that neutrophil dysfunctions lead to acute pyelonephritis and renal scarring. Here we discuss the mechanisms of neutrophil-mediated, chemokine receptor (CXCR1)-dependent clearance, and the defect in interleukin-8 receptor homolog knock-out (IL-8Rh KO) mice and describe the data linking low CXCR1 expression to recurrent pyelonephritis in man, as well as the information on the genetic basis for low CXCR1 expression in affected patients. Finally, the mechanisms of renal scarring in IL8Rh KO mice will be discussed in relation to human disease. Our studies hold the promise to provide a molecular and genetic explanation for disease susceptibility in some patients with UTI and to offer more precise tools for the diagnosis and therapy of these infections.
  •  
9.
  • Johansson, Karl, et al. (författare)
  • Shiga Toxin-Bearing Microvesicles Exert a Cytotoxic Effect on Recipient Cells Only When the Cells Express the Toxin Receptor
  • 2020
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Shiga toxin is the main virulence factor of non-invasive enterohemorrhagic Escherichia coli strains capable of causing hemolytic uremic syndrome. Our group has previously shown that the toxin can reach the kidney within microvesicles where it is taken up by renal cells and the vesicles release their cargo intracellularly, leading to toxin-mediated inhibition of protein synthesis and cell death. The aim of this study was to examine if recipient cells must express the globotriaosylceramide (Gb3) toxin receptor for this to occur, or if Gb3-negative cells are also susceptible after uptake of Gb3-positive and toxin-positive microvesicles. To this end we generated Gb3-positive A4GALT–transfected CHO cells, and a vector control lacking Gb3 (CHO-control cells), and decreased Gb3 synthesis in native HeLa cells by exposing them to the glycosylceramide synthase inhibitor PPMP. We used these cells, and human intestinal DLD-1 cells lacking Gb3, and exposed them to Shiga toxin 2-bearing Gb3-positive microvesicles derived from human blood cells. Results showed that only recipient cells that possessed endogenous Gb3 (CHO-Gb3 transfected and native HeLa cells) exhibited cellular injury, reduced cell metabolism and protein synthesis, after uptake of toxin-positive microvesicles. In Gb3-positive cells the toxin introduced via vesicles followed the retrograde pathway and was inhibited by the retrograde transport blocker Retro-2.1. CHO-control cells, HeLa cells treated with PPMP and DLD-1 cells remained unaffected by toxin-positive microvesicles. We conclude that Shiga toxin-containing microvesicles can be taken up by Gb3-negative cells but the recipient cell must express endogenous Gb3 for the cell to be susceptible to the toxin.
  •  
10.
  • Aradottir, Sigridur Sunna, et al. (författare)
  • Factor D Inhibition Blocks Complement Activation Induced by Mutant Factor B Associated With Atypical Hemolytic Uremic Syndrome and Membranoproliferative Glomerulonephritis
  • 2021
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement factor B (FB) mutant variants are associated with excessive complement activation in kidney diseases such as atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy and membranoproliferative glomerulonephritis (MPGN). Patients with aHUS are currently treated with eculizumab while there is no specific treatment for other complement-mediated renal diseases. In this study the phenotype of three FB missense variants, detected in patients with aHUS (D371G and E601K) and MPGN (I242L), was investigated. Patient sera with the D371G and I242L mutations induced hemolysis of sheep erythrocytes. Mutagenesis was performed to study the effect of factor D (FD) inhibition on C3 convertase-induced FB cleavage, complement-mediated hemolysis, and the release of soluble C5b-9 from glomerular endothelial cells. The FD inhibitor danicopan abrogated C3 convertase-associated FB cleavage to the Bb fragment in patient serum, and of the FB constructs, D371G, E601K, I242L, the gain-of-function mutation D279G, and the wild-type construct, in FB-depleted serum. Furthermore, the FD-inhibitor blocked hemolysis induced by the D371G and D279G gain-of-function mutants. In FB-depleted serum the D371G and D279G mutants induced release of C5b-9 from glomerular endothelial cells that was reduced by the FD-inhibitor. These results suggest that FD inhibition can effectively block complement overactivation induced by FB gain-of-function mutations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy