SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) ;pers:(Andrén Per E.)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) > Andrén Per E.

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, C. L., et al. (författare)
  • Chromosome 19 Annotations with Disease Speciation: A First Report from the Global Research Consortium
  • 2013
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:1, s. 134-149
  • Tidskriftsartikel (refereegranskat)abstract
    • A first research development progress report of the Chromosome 19 Consortium with members from Sweden, Norway, Spain, United States, China and India, a part of the Chromosome-centric Human Proteome Project (C-HPP) global initiative, is presented (http://www.c-hpp.org). From the chromosome 19 peptide-targeted library constituting 6159 peptides, a pilot study was conducted using a subset with 125 isotope-labeled peptides. We applied an annotation strategy with triple quadrupole, ESI-Qtrap, and MALDI mass spectrometry platforms, comparing the quality of data within and in between these instrumental set-ups. LC–MS conditions were outlined by multiplex assay developments, followed by MRM assay developments. SRM was applied to biobank samples, quantifying kallikrein 3 (prostate specific antigen) in plasma from prostate cancer patients. The antibody production has been initiated for more than 1200 genes from the entire chromosome 19, and the progress developments are presented. We developed a dedicated transcript microarray to serve as the mRNA identifier by screening cancer cell lines. NAPPA protein arrays were built to align with the transcript data with the Chromosome 19 NAPPA chip, dedicated to 90 proteins, as the first development delivery. We have introduced an IT-infrastructure utilizing a LIMS system that serves as the key interface for the research teams to share and explore data generated within the project. The cross-site data repository will form the basis for sample processing, including biological samples as well as patient samples from national Biobanks.
  •  
2.
  • Nilsson, C. L., et al. (författare)
  • Use of ENCODE Resources to Characterize Novel Proteoforms and Missing Proteins in the Human Proteome
  • 2015
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 14:2, s. 603-608
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the utility of integrated strategies that employ both translation of ENCODE data and major proteomic technology pillars to improve the identification of the "missing proteins", novel proteoforms, and PTMs. On one hand, databases in combination with bioinformatic tools are efficiently utilized to establish microarray-based transcript analysis and supply rapid protein identifications in clinical samples. On the other hand, sequence libraries are the foundation of targeted protein identification and quantification using mass spectrometric and immunoaffinity techniques. The results from combining proteoENCODEdb searches with experimental mass spectral data indicate that some alternative splicing forms detected at the transcript level are in fact translated to proteins. Our results provide a step toward the directives of the C-HPP initiative and related biomedical research.
  •  
3.
  • Sundström, Ingela, et al. (författare)
  • In vivo investigation of brain and systemic ketobemidone metabolism
  • 2010
  • Ingår i: The Analyst. - : Royal Society of Chemistry (RSC). - 0003-2654 .- 1364-5528. ; 135:2, s. 405-413
  • Tidskriftsartikel (refereegranskat)abstract
    • Ketobemidone metabolites have previously been identified in urine and plasma; here we show, for the first time, that norketobemidone and ketobemidone N-oxide are present in in vivo microdialysate from rat brain (striatum) after reverse microdialysis, suggesting striatal metabolism of ketobemidone. Ketobemidone metabolites were also identified in in vivo microdialysate samples from brain and blood, as well as in urine from rats, after subcutaneous administration of ketobemidone. Three Phase I metabolites (norketobemidone, ketobemidone N-oxide and hydroxymethoxyketobemidone) and three Phase II metabolites (glucuronic acid conjugates of ketobemidone, norketobemidone and hydroxymethoxyketobemidone) were identified in the microdialysates after subcutaneous administration. Coupled capillary liquid chromatography tandem mass spectrometry (LC-MS/MS) and SPE (boronate)-MS/MS were utilized for the analysis of the biological samples. The Phase I metabolites were identified by comparing the retention times and tandem mass spectra of the microdialysates with synthetic standards. The Phase II metabolites were identified by determination of exact masses and by comparing the tandem mass spectra of the microdialysates with those of synthetic standards for the aglycones. Hydroxyketobemidone, a catechol-type Phase I metabolite, was selectively isolated by solid-phase boronate-complexation but identified in urine alone. This work demonstrated that the in vivo microdialysis technique in combination with LC-MS/MS can be used to study the local metabolism of a drug in the brain.
  •  
4.
  • Nilsson, Anna, et al. (författare)
  • Fine Mapping the Spatial Distribution and Concentration of Unlabeled Drugs within Tissue Micro-Compartments Using Imaging Mass Spectrometry
  • 2010
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 5:7, s. e11411-
  • Tidskriftsartikel (refereegranskat)abstract
    • Readouts that define the physiological distributions of drugs in tissues are an unmet challenge and at best imprecise, but are needed in order to understand both the pharmacokinetic and pharmacodynamic properties associated with efficacy. Here we demonstrate that it is feasible to follow the in vivo transport of unlabeled drugs within specific organ and tissue compartments on a platform that applies MALDI imaging mass spectrometry to tissue sections characterized with high definition histology. We have tracked and quantified the distribution of an inhaled reference compound, tiotropium, within the lungs of dosed rats, using systematic point by point MS and MS/MS sampling at 200 mu m intervals. By comparing drug ion distribution patterns in adjacent tissue sections, we observed that within 15 min following exposure, tiotropium parent MS ions (mass-to-charge; m/z 392.1) and fragmented daughter MS/MS ions (m/z 170.1 and 152.1) were dispersed in a concentration gradient (80 fmol-5 pmol) away from the central airways into the lung parenchyma and pleura. These drug levels agreed well with amounts detected in lung compartments by chemical extraction. Moreover, the simultaneous global definition of molecular ion signatures localized within 2-D tissue space provides accurate assignment of ion identities within histological landmarks, providing context to dynamic biological processes occurring at sites of drug presence. Our results highlight an important emerging technology allowing specific high resolution identification of unlabeled drugs at sites of in vivo uptake and retention.
  •  
5.
  • Thorslund, Sara, et al. (författare)
  • Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip
  • 2005
  • Ingår i: Electrophoresis. - : Wiley. - 0173-0835 .- 1522-2683. ; 26:24, s. 4674-4683
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel microsystem device in poly(dimethylsiloxane) (PDMS) for MS detection is presented. The microchip integrates sample injection, capillary electrophoretic separation, and electrospray emitter in a single substrate, and all modules are fabricated in the PDMS bulk material. The injection and separation flow is driven electrokinetically and the total amount of external equipment needed consists of a three-channel high-voltage power supply. The instant switching between sample injection and separation is performed through a series of low-cost relays, limiting the separation field strength to a maximum of 270 V/cm. We show that this set-up is sufficient to accomplish electrospray MS analysis and, to a moderate extent, microchip separation of standard peptides. A new method of instant in-channel oxidation makes it possible to overcome the problem of irreversibly bonded PDMS channels that have recovered their hydrophobic properties over time. The fast method turns the channel surfaces hydrophilic and less prone to nonspecific analyte adsorption, yielding better separation efficiencies and higher apparent peptide mobilities.
  •  
6.
  • Klintenberg, Rebecka, et al. (författare)
  • Altered extracellular striatal in vivo biotransformation of the opioid neuropeptide dynorphin A(1-17) in the unilateral 6-OHDA rat model of Parkinson's disease
  • 2005
  • Ingår i: Journal of Mass Spectrometry. - : Wiley. - 1076-5174 .- 1096-9888. ; 40:2, s. 261-270
  • Tidskriftsartikel (refereegranskat)abstract
    • The in vivo biotransformation of dynorphin A(1-17) (Dyn A) was studied in the striatum of hemiparkinsonian rats by using microdialysis in combination with nanoflow reversed-phase liquid chromatography/electrospray time-of-flight mass spectrometry. The microdialysis probes were implanted into both hemispheres of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats. Dyn A (10 pmol microl(-1)) was infused through the probes at 0.4 microl min(-1) for 2 h. Samples were collected every 30 min and analyzed by mass spectrometry. The results showed for the first time that there was a difference in the Dyn A biotransformation when comparing the two corresponding sides of the brain. Dyn A metabolites 1-8, 1-16, 5-17, 10-17, 7-10 and 8-10 were detected in the dopamine-depleted striatum but not in the untreated striatum. Dyn A biotransformed fragments found in both hemispheres were N-terminal fragments 1-4, 1-5, 1-6, 1-11, 1-12 and 1-13, C-terminal fragments 2-17, 3-17, 4-17, 7-17 and 8-17 and internal fragments 2-5, 2-10, 2-11, 2-12, and 8-15. The relative levels of these fragments were lower in the dopamine-depleted striatum. The results imply that the extracellular in vivo processing of the dynorphin system is being disturbed in the 6-OHDA-lesion animal model of Parkinson's disease.
  •  
7.
  • Zhang, Xiaoqun, et al. (författare)
  • Repeated l-DOPA treatment increases c-fos and BDNF mRNAs in the subthalamic nucleus in the 6-OHDA rat model of Parkinson's disease
  • 2006
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993 .- 1872-6240. ; 27, s. 96-96
  • Tidskriftsartikel (refereegranskat)abstract
    • The subthalamic nucleus and the striatum are input regions of the basal ganglia. This study used the unilateral 6-OHDA rat model of Parkinson's disease to examine effects of l-DOPA on the expression of c-fos and BDNF mRNAs in these nuclei. Dopamine depletion per se did not affect c-fos or BDNF. Both a single and repeated injections of l-DOPA induced c-fos, but not BDNF, in the dopamine-depleted striatum. However, repeated l-DOPA treatment increased c-fos and BDNF in the dopamine-depleted subthalamic nucleus. These molecular adaptations may reflect changes in neuronal plasticity that underlie some therapeutic actions and/or side effects of l-DOPA in Parkinson's disease.
  •  
8.
  • Végvári, Ákos, et al. (författare)
  • Essential tactics of tissue preparation and matrix nano-spotting for successful compound imaging mass spectrometry
  • 2010
  • Ingår i: Journal of Proteomics. - : Elsevier BV. - 1876-7737 .- 1874-3919. ; 73:6, s. 1270-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultimate goal of MALDI-Imaging Mass Spectrometry (MALDI-IMS) is to achieve spatial localization of analytes in tissue sections down to individual tissue compartments or even at the level of a few cells. With compound tissue imaging, it is possible to track the transportation of an unlabelled, inhaled reference compound within lung tissue, through the application of MALDI-IMS. The procedure for isolation and preparation of lung tissues is found to be crucial in order to preserve the anatomy and structure of the pulmonary compartments. To avoid delocalization of analytes within lung tissue compartments we have applied an in-house designed nano-spotter, based on a microdispenser mounted on an XY table, of which movement and spotting functionality were fully computer controlled. We demonstrate the usefulness of this platform in lung tissue sections isolated from rodent in vivo model, applied to compound tissue imaging as exemplified with the determination of the spatial distribution of (1 alpha,2 beta,4 beta,7 beta)-7-[(hydroxidi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatric yclo[3.3.1.0(2,4)]nonane, also known as tiotropium. We provide details on tissue preparation protocols and sample spotting technology for successful identification of drug in mouse lung tissue by using MALDI-Orbitrap instrumentation.
  •  
9.
  • Källback, Patrik, et al. (författare)
  • A Space Efficient Direct Access Data Compression Approach for Mass Spectrometry Imaging
  • 2018
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 90:6, s. 3676-3682
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in mass spectrometry imaging that improve both spatial and mass resolution are resulting in increasingly larger data files that are difficult to handle with current software. We have developed a novel near-lossless compression method with data entropy reduction that reduces the file size significantly. The reduction in data size can be set at four different levels (coarse, medium, fine, and superfine) prior to running the data compression. This can be applied to spectra or spectrum-by-spectrum, or it can be applied to transpose arrays or array-by-array, to efficiently read the data without decompressing the whole data set. The results show that a compression ratio of up to 5.9:1 was achieved for data from commercial mass spectrometry software programs and 55:1 for data from our in-house developed mslQuant program. Comparing the average signals from regions of interest, the maximum deviation was 0.2% between compressed and uncompressed data sets with coarse accuracy for the data entropy reduction. In addition, when accessing the compressed data by selecting a random m/z value using mslQuant, the time to update an image on the computer screen was only slightly increased from 92 (+/- 32) ms (uncompressed) to 114 (+/- 13) ms (compressed). Furthermore, the compressed data can be stored on readily accessible servers for data evaluation without further data reprocessing. We have developed a space efficient, direct access data compression algorithm for mass spectrometry imaging, which can be used for various data-demanding mass spectrometry imaging applications.
  •  
10.
  • Sandbaumhüter, Friederike A., et al. (författare)
  • Enantioselective CE–MS analysis of ketamine metabolites in urine
  • 2023
  • Ingår i: Electrophoresis. - : Wiley-VCH Verlagsgesellschaft. - 0173-0835 .- 1522-2683. ; 44:1-2, s. 125-134
  • Tidskriftsartikel (refereegranskat)abstract
    • The chiral drug ketamine has long-lasting antidepressant effects with a fast onset and is also suitable to treat patients with therapy-resistant depression. The metabolite hydroxynorketamine (HNK) plays an important role in the antidepressant mechanism of action. Hydroxylation at the cyclohexanone ring occurs at positions 4, 5, and 6 and produces a total of 12 stereoisomers. Among those, the four 6HNK stereoisomers have the strongest antidepressant effects. Capillary electrophoresis with highly sulfated γ-cyclodextrin (CD) as a chiral selector in combination with mass spectrometry (MS) was used to develop a method for the enantioselective analysis of HNK stereoisomers with a special focus on the 6HNK stereoisomers. The partial filling approach was applied in order to avoid contamination of the MS with the chiral selector. Concentration of the chiral selector and the length of the separation zone were optimized. With 5% highly sulfated γ-CD in 20 mM ammonium formate with 10% formic acid and a 75% filling the four 6HNK stereoisomers could be separated with a resolution between 0.79 and 3.17. The method was applied to analyze fractionated equine urine collected after a ketamine infusion and to screen the fractions as well as unfractionated urine for the parent drug ketamine and other metabolites, including norketamine and dehydronorketamine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43
Typ av publikation
tidskriftsartikel (37)
annan publikation (4)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (38)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Nilsson, Anna (21)
Svenningsson, Per (11)
Svensson, Marcus (10)
Kultima, Kim (5)
Zhang, Xiaoqun (5)
visa fler...
Shariatgorji, Mohamm ... (5)
Andrén, Per E., Prof ... (4)
Marko-Varga, György (4)
Scholz, Birger (4)
Vegvari, Akos (3)
Jansson, Erik T., Do ... (3)
Alm, Henrik (3)
Vallianatou, Theodos ... (2)
Zubarev, Roman A (2)
Kjeldsen, Frank (2)
Hober, Sophia (2)
Laurell, Thomas (2)
Gustavsson, Lena (2)
Savitski, Mikhail M (2)
Westerlund, Douglas (2)
Andersson, Malin (2)
Gordh, Torsten (1)
Svenningsson, P (1)
Bergquist, Jonas (1)
Lilja, H. (1)
Nilsson, Johan (1)
Nyberg, Fred (1)
Aerts, Jordan T. (1)
Sweedler, Jonathan V ... (1)
Lindberg, Peter (1)
Malm, Johan (1)
Akhtar, Malik N. (1)
Southey, Bruce R. (1)
Rodriguez-Zas, Sandr ... (1)
Welinder, Charlotte (1)
Fex-Svenningsen, Åsa (1)
Dencker, Lennart (1)
Stigson, Michael (1)
Karlsson, Oskar (1)
Farde, Lars (1)
El-Shehawy, Rehab (1)
Lodén, Henrik (1)
Hallberg, Mathias (1)
Persson, Björn (1)
Caprioli, Richard M (1)
Nikolajeff, Fredrik (1)
Skold, Karl (1)
Rezeli, Melinda (1)
Karlgren, Maria (1)
visa färre...
Lärosäte
Uppsala universitet (43)
Karolinska Institutet (12)
Lunds universitet (4)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (2)
Språk
Engelska (43)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (43)
Naturvetenskap (7)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy