SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) ;pers:(Dahlgren David)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) > Dahlgren David

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahlgren, David, et al. (författare)
  • Regional Intestinal Drug Permeability and Effects of Permeation Enhancers in Rat
  • 2020
  • Ingår i: Pharmaceutics. - : MDPI. - 1999-4923 .- 1999-4923. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Sufficient colonic absorption is necessary for all systemically acting drugs in dosage forms that release the drug in the large intestine. Preclinically, colonic absorption is often investigated using the rat single-pass intestinal perfusion model. This model can determine intestinal permeability based on luminal drug disappearance, as well as the effect of permeation enhancers on drug permeability. However, it is uncertain how accurate the rat single-pass intestinal perfusion model predicts regional intestinal permeability and absorption in human. There is also a shortage of systematic in vivo investigations of the direct effect of permeation enhancers in the small and large intestine. In this rat single-pass intestinal perfusion study, the jejunal and colonic permeability of two low permeability drugs (atenolol and enalaprilat) and two high-permeability ones (ketoprofen and metoprolol) was determined based on plasma appearance. These values were compared to already available corresponding human data from a study conducted in our lab. The colonic effect of four permeation enhancers-sodium dodecyl sulfate, chitosan, ethylenediaminetetraacetic acid (EDTA), and caprate-on drug permeability and transport of chromium EDTA (an established clinical marker for intestinal barrier integrity) was determined. There was no difference in jejunal and colonic permeability determined from plasma appearance data of any of the four model drugs. This questions the validity of the rat single-pass intestinal perfusion model for predicting human regional intestinal permeability. It was also shown that the effect of permeation enhancers on drug permeability in the colon was similar to previously reported data from the rat jejunum, whereas the transport of chromium EDTA was significantly higher (p < 0.05) in the colon than in jejunum. Therefore, the use of permeation enhancers for increasing colonic drug permeability has greater risks than potential medical rewards, as indicated by the higher permeation of chromium EDTA compared to the drugs.
  •  
2.
  • Dahlgren, David, et al. (författare)
  • Regional Intestinal Permeability in Dogs : Biopharmaceutical Aspects for Development of Oral Modified-Release Dosage Forms
  • 2016
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 13:9, s. 3022-3033
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of oral modified-release (MR) dosage forms requires an active pharmaceutical ingredient (API) with a sufficiently high absorption rate in both the small and large intestine. Dogs are commonly used in preclinical evaluation of regional intestinal absorption and in the development of novel MR dosage forms. This study determined regional intestinal effective permeability (P-eff) in dogs with the aim to improve regional Peff prediction in humans. Four model drugs, atenolol, enalaprilat, metoprolol, and ketoprofen, were intravenously and regionally dosed twice as a solution into the proximal small intestine (P-SI) and large intestine (LI) of three dogs with intestinal stomas. Based on plasma data from two separate study occasions for each dog, regional Peff values were calculated using a validated intestinal deconvolution method. The determined mean P-eff values were 0.62, 0.14, 1.06, and 3.66 X 10(-4) cm/s in the P-SI, and 0.13, 0.02, 1.03, and 2.20 X 10(-4) cm/s in the LI, for atenolol, enalaprilat, metoprolol, and ketoprofen, respectively. The determined P-SI Peff values in dog were highly correlated (R-2 = 0.98) to the historically directly determined human jejunal P-eff after a single-pass perfusion. The determined dog P-SI P-eff values were also successfully implemented in GI-Sim to predict the risk for overestimation of LI absorption of low permeability drugs. We conclude that the dog intestinal stoma model is a useful preclinical tool for determination of regional intestinal permeability. Still, further studies are recommended to evaluate additional APIs, sources of variability, and formulation types, for more accurate determination of the dog model in the drug development process.
  •  
3.
  • Koziolek, M., et al. (författare)
  • Challenges in Permeability Assessment for Oral Drug Product Development
  • 2023
  • Ingår i: Pharmaceutics. - : MDPI. - 1999-4923. ; 15:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug permeation across the intestinal epithelium is a prerequisite for successful oral drug delivery. The increased interest in oral administration of peptides, as well as poorly soluble and poorly permeable compounds such as drugs for targeted protein degradation, have made permeability a key parameter in oral drug product development. This review describes the various in vitro, in silico and in vivo methodologies that are applied to determine drug permeability in the human gastrointestinal tract and identifies how they are applied in the different stages of drug development. The various methods used to predict, estimate or measure permeability values, ranging from in silico and in vitro methods all the way to studies in animals and humans, are discussed with regard to their advantages, limitations and applications. A special focus is put on novel techniques such as computational approaches, gut-on-chip models and human tissue-based models, where significant progress has been made in the last few years. In addition, the impact of permeability estimations on PK predictions in PBPK modeling, the degree to which excipients can affect drug permeability in clinical studies and the requirements for colonic drug absorption are addressed.
  •  
4.
  • Dahlgren, David, et al. (författare)
  • Preclinical Effect of Absorption Modifying Excipients on Rat Intestinal Transport of Model Compounds and the Mucosal Barrier Marker 51Cr-EDTA
  • 2017
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 14:12, s. 4243-4251
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a renewed interest from the pharmaceutical field to develop oral formulations of compounds, such as peptides, oligonucleotides, and polar drugs. However, these often suffer from insufficient absorption across the intestinal mucosal barrier. One approach to circumvent this problem is the use of absorption modifying excipient(s) (AME). This study determined the absorption enhancing effect of four AMEs (sodium dodecyl sulfate, caprate, chitosan, N-acetylcysteine) on five model compounds in a rat jejunal perfusion model. The aim was to correlate the model compound absorption to the blood-to-lumen clearance of the mucosal marker for barrier integrity, 51Cr-EDTA. Sodium dodecyl sulfate and chitosan increased the absorption of the low permeation compounds but had no effect on the high permeation compound, ketoprofen. Caprate and N-acetylcysteine did not affect the absorption of any of the model compounds. The increase in absorption of the model compounds was highly correlated to an increased blood-to-lumen clearance of 51Cr-EDTA, independent of the AME. Thus, 51Cr-EDTA could be used as a general, sensitive, and validated marker molecule for absorption enhancement when developing novel formulations.
  •  
5.
  • Peters, Karsten, et al. (författare)
  • Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:19
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-functional intestinal mucosal barrier can be compromised as a result of various diseases, chemotherapy, radiation, and chemical exposures including surfactants. Currently, there are no approved drugs targeting a dysfunctional intestinal barrier, which emphasizes a significant medical need. One candidate drug reported to regulate intestinal mucosal permeability is melatonin. However, it is still unclear if its effect is primarily receptor mediated or antioxidative, and if it is associated with enteric neural pathways. The aim of this rat intestinal perfusion study was to investigate the mechanisms of melatonin and nicotinic acetylcholine receptors on the increase in intestinal mucosal clearance of Cr-51-labeled ethylenediaminetetraacetate induced by 15 min luminal exposure to the anionic surfactant, sodium dodecyl sulfate. Our results show that melatonin abolished the surfactant-induced increase in intestinal permeability and that this effect was inhibited by luzindole, a melatonin receptor antagonist. In addition, mecamylamine, an antagonist of nicotinic acetylcholine receptors, reduced the surfactant-induced increase in mucosal permeability, using a signaling pathway not influenced by melatonin receptor activation. In conclusion, our results support melatonin as a potentially potent candidate for the oral treatment of a compromised intestinal mucosal barrier, and that its protective effect is primarily receptor-mediated.
  •  
6.
  • Dahlgren, David, et al. (författare)
  • Prevention of Rat Intestinal Injury with a Drug Combination of Melatonin and Misoprostol
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:18
  • Tidskriftsartikel (refereegranskat)abstract
    • A healthy intestinal barrier prevents uptake of allergens and toxins, whereas intestinal permeability increases following chemotherapy and in many gastrointestinal and systemic diseases and disorders. Currently, there are no approved drugs that target and repair the intestinal epithelial barrier while there is a medical need for such treatment in gastrointestinal and related conditions. The objective of this single-pass intestinal perfusion study in rats was to investigate the preventive cytoprotective effect of three mucosal protective drugs-melatonin, misoprostol, and teduglutide-with different mechanisms of action on an acute jejunal injury induced by exposing the intestine for 15 min to the anionic surfactant, sodium dodecyl sulfate (SDS). The effect was evaluated by monitoring intestinal clearance of Cr-51-labeled ethylenediaminetetraacetate and intestinal histology before, during, and after luminal exposure to SDS. Our results showed that separate pharmacological pretreatments with luminal misoprostol and melatonin reduced acute SDS-induced intestinal injury by 47% and 58%, respectively, while their use in combination abolished this injury. This data supports further development of drug combinations for oral treatments of conditions and disorders related to a dysregulated or compromised mucosal epithelial barrier.
  •  
7.
  • Dahlgren, David, et al. (författare)
  • Regional Intestinal Permeability of Three Model Drugs in Human
  • 2016
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 13:9, s. 3013-3021
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently there are only a limited number of determinations of human P-eff in the distal small intestine and none in the large intestine. This has hindered the validation of preclinical models with regard to absorption in the distal parts of the intestinal tract, which can be substantial for BCS class II-IV drugs, and drugs formulated into modified-release (MR) dosage forms. To meet this demand, three model drugs (atenolol, metoprolol, and ketoprofen) were dosed in solution intravenously, and into the jejunum, ileum, and colon of 14 healthy volunteers. The P-eff of each model drug was then calculated using a validated deconvolution method. The median P-eff of atenolol in the jejunum, ileum, and colon was 0.45, 0.15, and 0.013 X 10(-4) cm/s, respectively. The corresponding values for metoprolol were 1.72, 0.72, and 1.30 X 10(-4) cm/s, and for ketoprofen 8.85, 6.53, and 3.37 X 10(-4) cm/s, respectively. This is the first study where the human Peff of model drugs has been determined in all parts of the human intestinal tract in the same subjects. The jejunal values were similar to directly determined values using intestinal single-pass perfusion, indicating that the deconvolution method is a valid approach for determining regional P-eff. The values from this study will be highly useful in the validation of preclinical regional absorption models and in silico tools.
  •  
8.
  • Dahlgren, David, et al. (författare)
  • Effect of paracellular permeation enhancers on intestinal permeability of two peptide drugs, enalaprilat and hexarelin, in rats
  • 2021
  • Ingår i: Acta Pharmaceutica Sinica B. - : INST MATERIA MEDICA, CHINESE ACAD MEDICAL SCIENCES. - 2211-3835 .- 2211-3843. ; 11:6, s. 1667-1675
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcellular permeation enhancers are known to increase the intestinal permeability of enalaprilat, a 349 Da peptide, but not hexarelin (887 Da). The primary aim of this paper was to investigate if paracellular permeability enhancers affected the intestinal permeation of the two peptides. This was investigated using the rat single-pass intestinal perfusion model with concomitant blood sampling. These luminal compositions included two paracellular permeation enhancers, chitosan (5 mg/mL) and ethylenediaminetetraacetate (EDTA, 1 and 5 mg/mL), as well as low luminal tonicity (100 mOsm) with or without lidocaine. Effects were evaluated by the change in lumen-to-blood permeability of hexarelin and enalaprilat, and the blood-to-lumen clearance of (51)chromium-labeled EDTA (CLCr-EDTA), a clinical marker for mucosal barrier integrity. The two paracellular permeation enhancers increased the mucosal permeability of both peptide drugs to a similar extent. The data in this study suggests that the potential for paracellular permeability enhancers to increase intestinal absorption of hydrophilic peptides with low molecular mass is greater than for those with transcellular mechanism-of-action. Further, the mucosal blood-to-lumen flux of Cr-51-EDTA was increased by the two paracellular permeation enhancers and by luminal hypotonicity. In contrast, luminal hypotonicity did not affect the lumen-to-blood transport of enalaprilat and hexarelin. This suggests that hypotonicity affects paracellular solute transport primarily in the mucosal crypt region, as this area is protected from luminal contents by a constant water flow from the crypts.
  •  
9.
  • Dahlgren, David, et al. (författare)
  • Intestinal absorption of BCS class II drugs administered as nanoparticles : A review based on in vivo data from intestinal perfusion models
  • 2020
  • Ingår i: ADMET & DMPK. - : International Association of Physical Chemists (IAPC). - 1848-7718. ; 8:4, s. 375-390
  • Forskningsöversikt (refereegranskat)abstract
    • An established pharmaceutical strategy to increase oral drug absorption of low solubility-high permeability drugs is to create nanoparticles of them. Reducing the size of the solid-state particles increases their dissolution and transport rate across the mucus barrier and the aqueous boundary layer. Suspensions of nanoparticles also sometimes behave differently than those of larger particles in the fed state. This review compares the absorption mechanisms of nano- and larger particles in the lumen at different prandial states, with an emphasis on data derived from in vivo models. Four BSC class II drugs-aprepitant, cyclosporine, danazol and fenofibrate-are discussed in detail based on information from preclinical intestinal perfusion models.
  •  
10.
  • Dahlgren, David, et al. (författare)
  • The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs.
  • 2018
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 547:1-2, s. 158-168
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients, or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy