SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) ;pers:(Fridén Markus)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) > Fridén Markus

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fridén, Markus, 1978- (författare)
  • Development of Methods for Assessing Unbound Drug Exposure in the Brain : In vivo, in vitro and in silico
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The blood-brain barrier is formed by tightly joined capillary cells with transporter proteins and acts as to regulate the brain concentration of nutrients as well as many drugs. When developing central nervous system drugs it is necessary to measure the unbound drug concentration in the brain, i.e. the unbound brain exposure. This is to ensure that the drug reaches the site of action. Furthermore, when designing new drugs it is extremely valuable to be able to predict brain exposure from a tentative drug structure. Established methods to measure total drug concentrations are of limited (if any) utility since the pharmacologically active, unbound, concentration is not obtained. The aim of the conducted research was to develop an efficient methodology to measure unbound drug in the brain and to generate a dataset for developing computational prediction models describing the relationship between drug structure and unbound brain exposure. First it was demonstrated that unbound brain exposure can be efficiently assessed using a combination of total drug concentrations in the brain and separate measurements of drug binding in the brain slices. The in vitro brain slice method was refined and made high-throughput. Improvements were also made to the in vivo measurements of total concentrations by introducing an appropriate correction for drug in residual blood. Modeling of a 43-drug dataset in the rat showed that unbound brain exposure is related to the drug hydrogen bonding potential and not to lipid solubility, which contrasts the common understanding. Further, the drug concentrations in cerebrospinal fluid approximated unbound concentrations in the brain (r2=0.80) and were also correlated with corresponding measurements in humans (r2=0.56). Therefore, rat-derived prediction models can be used when designing drugs for humans. This thesis work has provided drug industry and academia with efficient tools to obtain and to use relevant estimates of drug exposure in the brain for evaluating drugs candidates.
  •  
2.
  • Sadiq, Muhammad Waqas, et al. (författare)
  • Lung pharmacokinetics of inhaled and systemic drugs : A clinical evaluation
  • 2021
  • Ingår i: British Journal of Pharmacology. - : John Wiley & Sons. - 0007-1188 .- 1476-5381. ; 178:22, s. 4440-4451
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose Human pharmacokinetic studies of lung-targeted drugs are typically limited to measurements of systemic plasma concentrations, which provide no direct information on lung target-site concentrations. We aimed to evaluate lung pharmacokinetics of commonly prescribed drugs by sampling different lung compartments after inhalation and oral administration. Experimental Approach Healthy volunteers received single, sequential doses of either inhaled salbutamol, salmeterol and fluticasone propionate (n = 12), or oral salbutamol and propranolol (n = 6). Each participant underwent bronchoscopies and gave breath samples for analysis of particles in exhaled air at two points after drug administration (1 and 6, 2 and 9, 3 and 12, or 4 and 18 h). Lung samples were taken via bronchosorption, bronchial brush, mucosal biopsy and bronchoalveolar lavage during each bronchoscopy. Blood samples were taken during the 24 h after administration. Pharmacokinetic profiles were generated by combining data from multiple individuals, covering all sample timings. Key Results Pharmacokinetic profiles were obtained for each drug in lung epithelial lining fluid, lung tissue and plasma. Inhalation of salbutamol resulted in approximately 100-fold higher concentrations in lung than in plasma. Salmeterol and fluticasone concentration ratios in lung versus plasma were higher still. Bronchosorption- and bronchoalveolar-lavage-generated profiles of inhaled drugs in epithelial lining fluid were comparable. For orally administered drugs, epithelial-lining-fluid concentrations were overestimated in bronchoalveolar-lavage-generated profiles. Conclusion and Implications Combining pharmacokinetic data derived from several individuals and techniques sampling different lung compartments enabled generation of pharmacokinetic profiles for evaluation of lung targeting after inhaled and oral drug delivery.
  •  
3.
  • Boger, Elin, et al. (författare)
  • A Novel In Vivo Receptor Occupancy Methodology for the Glucocorticoid Receptor : Toward An Improved Understanding of Lung Pharmacokinetic/Pharmacodynamic Relationships
  • 2015
  • Ingår i: Journal of Pharmacology and Experimental Therapeutics. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0022-3565 .- 1521-0103. ; 353:2, s. 279-287
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigation of pharmacokinetic/pharmacodynamic (PK/PD) relationships for inhaled drugs is challenging because of the limited possibilities of measuring tissue exposure and target engagement in the lung. The aim of this study was to develop a methodology for measuring receptor occupancy in vivo in the rat for the glucocorticoid receptor (GR) to allow more informative inhalation PK/PD studies. From AstraZeneca's chemical library of GR binders, compound 1 [N-(2-amino-2-oxo-ethyl)-3-[5-[(1R,2S)-2-(2,2-difluoropropanoylamino)-1-(2,3-dihydro-1,4-benzodioxin-6-yl) propoxy] indazol-1-yl]-N-methyl-benzamide] was identified to have properties that are useful as a tracer for GR in vitro. When given at an appropriate dose (30 nmol/kg) to rats, compound 1 functioned as a tracer in the lung and spleen in vivo using liquid chromatography-tandem mass spectrometry bioanalysis. The methodology was successfully used to show the dose-receptor occupancy relationship measured at 1.5 hours after intravenous administration of fluticasone propionate (20, 150, and 750 nmol/kg) as well as to characterize the time profile for receptor occupancy after a dose of 90 nmol/kg i.v. The dose giving 50% occupancy was estimated as 47 nmol/kg. The methodology is novel in terms of measuring occupancy strictly in vivo and by using an unlabeled tracer. This feature confers key advantages, including occupancy estimation not being influenced by drug particle dissolution or binding/dissociation taking place postmortem. In addition, the tracer may be labeled for use in positron emission tomography imaging, thus enabling occupancy estimation in humans as a translatable biomarker of target engagement.
  •  
4.
  • Lindqvist, Annika, 1983- (författare)
  • Quantitative Aspects of Nanodelivery Across the Blood-Brain Barrier : Exemplified with the Opioid Peptide DAMGO
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The use of nanocarriers is an intriguing approach in the development of efficacious treatment for brain disorders. The aim of the conducted research was to evaluate and quantify the impact of a liposomal nanocarrier formulation on the brain drug delivery. A novel approach for investigating the blood-brain barrier transport of liposomal DAMGO is presented, including in vivo microdialysis in rat, a high quality LC-MS/MS bioanalytical method and pharmacokinetic model analysis of the data. Factors limiting the brain distribution of the free peptide DAMGO were also investigated. Microdialysis, in combination with plasma sampling, made it possible to separate the released drug from the encapsulated and to quantify the active substance in both blood and brain interstitial fluid over time.The opioid peptide DAMGO entered the brain to a limited extent, with a clearance out of the brain 13 times higher than the clearance into the brain. The brain to blood ratio of unbound drug was not affected when the efflux transporter inhibitors cyclosporine A and elacridar were co-administered with DAMGO. Nor was the transport affected in the in vitro Caco-2 assay using the same inhibitors. This indicates that DAMGO is not transported by P-glycoprotein (Pgp) or breast cancer resistant protein (Bcrp). The blood-brain barrier transport was significantly increased for DAMGO when formulated in liposomes, resulting in 2-3 fold higher brain to blood ratio of unbound DAMGO. The increased brain delivery was seen both for glutathione tagged PEGylated liposomes, as well as for PEGyalted liposomes without specific brain targeting. The improvement in brain delivery was observed only when DAMGO was encapsulated into the liposomes, thus excluding any effect of the liposomes themselves on the integrity of the blood-brain barrier. Modeling of the data provided additional mechanistic understanding of the brain uptake, showing that endocytosis or transcytosis of intact liposomes across the endothelial cell membranes were unlikely. A model describing fusion of the liposomes with the luminal membrane described the experimental data the best.In conclusion, the studies presented in this thesis all contribute to an increased understanding of how to evaluate and improve brain delivery of CNS active drugs and contribute with important insights to the nanocarrier field.
  •  
5.
  •  
6.
  • Lindqvist, Annika, 1983-, et al. (författare)
  • Pharmacokinetic Considerations of Nanodelivery to the Brain : Using Modeling and Simulations to Predict Outcome of Liposomal Formulations
  • 2016
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 92, s. 173-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of nanocarriers is an intriguing solution to increase the brain delivery of novel therapeutics. The aim of this paper was to use pharmacokinetic analysis and simulations to identify key factors that determine the effective drug concentration-time profile at the target site in the brain. Model building and simulations were based on experimental data obtained from the administration of the opioid peptide DAMGO in glutathione tagged PEGylated liposomes to rats. Different pharmacokinetic models were investigated to explore the mechanisms of increased brain delivery. Concentration time profiles for a set of formulations with varying compound and carrier characteristics were simulated. By controlling the release rate from the liposome, the time profile and the extent of brain delivery can be regulated. The modeling did not support a mechanism of the liposomes passing the brain endothelial cell membrane in an intact form through endocytosis or transcytosis. The most likely process was found to be fusion of the liposome with the endothelial luminal membrane. The simulations revealed that low permeable compounds, independent on efflux, will gain the most from a nanocarrier formulation. The present model based approach is useful to explore and predict possibilities and limitations of carrier-based systems to the brain.
  •  
7.
  •  
8.
  • Bäckström, Erica, et al. (författare)
  • Development of a Novel Lung Slice Methodology for Profiling of Inhaled Compounds
  • 2016
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 105:2, s. 838-845
  • Tidskriftsartikel (refereegranskat)abstract
    • The challenge of defining the concentration of unbound drug at the lung target site after inhalation limits the possibility to optimize target exposure by compound design. In this study, a novel rat lung slice methodology has been developed and applied to study drug uptake in lung tissue, and the mechanisms by which this occurs. Freshly prepared lung slices (500 μm) from drug-naive rats were incubated with drugs followed by determination of the unbound drug volume of distribution in lung (Vu,lung), as the total concentration of drug in slices divided by the buffer (unbound) concentration. Vu,lung determined for a set of inhaled drug compounds ranged from 2.21 mL/g for salbutamol to 2970 mL/g for dibasic compound A. Co-incubation with monensin, a modulator of lysosomal pH, resulted in inhibition of tissue uptake of basic propranolol to 13%, indicating extensive lysosomal trapping. Partitioning into cells was particularly high for the cation MPP+ and the dibasic compound A, likely because of the carrier-mediated transport and lysosomal trapping. The results show that different factors are important for tissue uptake and the presented method can be used for profiling of inhaled compounds, leading to a greater understanding of distribution and exposure of drug in the lung.
  •  
9.
  • Fridén, Markus, et al. (författare)
  • Measurement of Unbound Drug Exposure in Brain : Modelling of pH Partitioning Explains Diverging Results between the Brain Slice and Brain Homogenate Methods
  • 2011
  • Ingår i: Drug Metabolism And Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0090-9556 .- 1521-009X. ; 39:3, s. 353-362
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently used methodology for determining unbound drug exposure in brain combines measurement of the total drug concentration in the whole brain in vivo with estimation of brain tissue binding from one of two available in vitro methods: equilibrium dialysis of brain homogenate and the brain slice uptake method. This study of 56 compounds compares the fraction of unbound drug in brain (f(u,brain)), determined using the brain homogenate method, with the unbound volume of distribution in brain (V(u,brain)), determined using the brain slice method. Discrepancies were frequent and primarily related to drug pH partitioning, due to the preservation of cellular structures in the slice that are absent in the homogenate. A mathematical model for pH partitioning into acidic intracellular compartments was derived to predict the slice V(u,brain) from measurements of f(u,brain) and drug pKa. This model allowed prediction of V(u,brain) from f(u,brain) within a 2.2-fold error range for 95% of the drugs, as compared to a 4.5-fold error range using the brain homogenate f(u,brain) method alone. The greatest discrepancies between the methods occurred with compounds that are actively transported into brain cells, including gabapentin, metformin and prototypic organic cation transporter substrates. It is concluded that intra-brain drug distribution is governed by several diverse mechanisms in addition to non-specific binding and that the slice method is therefore more reliable than the homogenate method. Alternatively, predictions of V(u,brain) can be made from homogenate f(u,brain) using the presented pH partition model, although this model does not take into consideration possible active brain cell uptake.
  •  
10.
  • Loryan, Irena, et al. (författare)
  • The brain slice method for studying drug distribution in the CNS
  • 2013
  • Ingår i: Fluids and Barriers of the CNS. - : BioMed Central. - 2045-8118. ; 10, s. 6-
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-throughput brain slice method is a precise and robust technique for estimating the overall uptake of drugs into brain tissue through determination of the unbound volume of distribution in the brain (Vu,brain; ml·g brain-1). Vu,brain describes the relationship between the total drug concentration in the brain and the concentration of unbound drug in the brain interstitial fluid, regardless of blood–brain barrier function. The brain slice method is more physiologically based than the brain homogenate method with respect to the assessment of drug distribution in the brain because the cell-cell interactions, pH gradients and active transport systems are all conserved. The method provides information that is directly relevant to issues such as nonspecific binding to brain tissue, lysosomal trapping, and active uptake into the cells. For these reasons, the brain slice method is recommended for estimation of target-site pharmacokinetics in the early drug discovery process and fundamental pharmacological studies. This article provides a detailed protocol for the rat and mouse brain slice methods, with the aim of enabling simple, cost-effective profiling of compounds with diverse physicochemical properties. The procedure for assessing the viability of the brain slices after the 5 h incubation period is also described. The results are interpreted for a set of compounds covering a wide range of physicochemical properties and various pharmacological targets. Application of the method for evaluating the unbound intracellular-to-extracellular concentration ratio (Kp,uu,cell) and the unbound brain-to-plasma concentration ratio (Kp,uu,brain) is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (19)
forskningsöversikt (3)
doktorsavhandling (2)
annan publikation (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Hammarlund-Udenaes, ... (14)
Bredberg, Ulf (6)
Boger, Elin (5)
Antonsson, Madeleine (4)
Bäckström, Erica (3)
visa fler...
Winiwarter, Susanne (2)
Lundqvist, Anders (2)
Syvänen, Stina (2)
Wan, Hong (2)
Eriksson, Ulf G (2)
Buckley, Stephen T. (1)
Engkvist, Ola (1)
Ahlin, Gustav (1)
Gabrielsson, Johan (1)
Couet, William (1)
Ehrhardt, Carsten (1)
Hammarlund-Udenaes, ... (1)
Persson, Alexander, ... (1)
Eklund, Daniel, 1984 ... (1)
Jirstrand, Mats, 196 ... (1)
Bergström, Fredrik (1)
Hu, Yang, 1989- (1)
Cedersund, Gunnar (1)
Eriksson, Ulf (1)
Bengtsson, Ola (1)
Ericsson, Therese (1)
Backman, Per (1)
Loryan, Irena, Assoc ... (1)
Lindh, Maria (1)
Terasaki, Tetsuya (1)
Nyman, Elin (1)
Ewing, Par (1)
Fihn, Britt-Marie (1)
Chappell, Michael (1)
Evans, Neil (1)
Lövfors, William (1)
Svanberg, Petter (1)
Ewing, Pär (1)
Jerndal, Gunilla (1)
Hohlfeld, Jens M. (1)
Chen, Hongming (1)
Colcloughl, Nicola (1)
Chen, Kan (1)
Johnstrom, Peter (1)
McGinnity, Dermot F. (1)
Di, Li (1)
Fischer, Holger (1)
Hu, Yang (1)
Feng, Bo (1)
visa färre...
Lärosäte
Uppsala universitet (25)
Örebro universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (26)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy