SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Clinical Medicine Radiology, Nuclear Medicine and Medical Imaging) ;pers:(Bech Martin)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Clinical Medicine Radiology, Nuclear Medicine and Medical Imaging) > Bech Martin

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Einarsdóttir, Hildur, et al. (författare)
  • Novelty detection of foreign objects in food using multi-modal X-ray imaging
  • 2016
  • Ingår i: Food Control. - : Elsevier BV. - 0956-7135. ; 67, s. 39-47
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we demonstrate a method for novelty detection of foreign objects in food products using grating-based multimodal X-ray imaging. With this imaging technique three modalities are available with pixel correspondence, enhancing organic materials such as wood chips, insects and soft plastics not detectable by conventional X-ray absorption radiography. We conduct experiments, where several food products are imaged with common foreign objects typically found in the food processing industry. To evaluate the benefit from using this multi-contrast X-ray technique over conventional X-ray absorption imaging, a novelty detection scheme based on well known image- and statistical analysis techniques is proposed. The results show that the presented method gives superior recognition results and highlights the advantage of grating-based imaging.
  •  
2.
  • Dahlin, Lars B., et al. (författare)
  • Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A deeper knowledge of the architecture of the peripheral nerve with three-dimensional (3D) imaging of the nerve tissue at the sub-cellular scale may contribute to unravel the pathophysiology of neuropathy. Here we demonstrate the feasibility of X-ray phase contrast holographic nanotomography to enable 3D imaging of nerves at high resolution, while covering a relatively large tissue volume. We show various subcomponents of human peripheral nerves in biopsies from patients with type 1 and 2 diabetes and in a healthy subject. Together with well-organized, parallel myelinated nerve fibres we show regenerative clusters with twisted nerve fibres, a sprouted axon from a node of Ranvier and other specific details. A novel 3D construction (with movie created) of a node of Ranvier with end segment of a degenerated axon and sprout of a regenerated one is captured. Many of these architectural elements are not described in the literature. Thus, X-ray phase contrast holographic nanotomography enables identifying specific morphological structures in 3D in peripheral nerve biopsies from a healthy subject and from patients with type 1 and 2 diabetes.
  •  
3.
  • Peruzzi, Niccolò, et al. (författare)
  • 3D analysis of the myenteric plexus of the human bowel by X-ray phase-contrast tomography - a future method?
  • 2020
  • Ingår i: Scandinavian Journal of Gastroenterology. - : Informa UK Limited. - 0036-5521 .- 1502-7708. ; 55:10, s. 1261-1267
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Light microscopical analysis in two dimensions, combined with immunohistochemistry, is presently the gold standard to describe the enteric nervous system (ENS). Our aim was to assess the usefulness of three-dimensional (3D) imaging by X-ray phase-contrast tomography in evaluating the ENS of the human bowel.MATERIAL AND METHODS: Myenteric ganglia were identified in full-thickness biopsies of the ileum and colon by hematoxylin & eosin staining. A1-mm biopsy punch was taken from the paraffin blocks and placed into a Kapton® tube for subsequent tomographic investigation. The samples were scanned, without further preparation, using phase-contrast tomography at two different scales: overview scans (performed with laboratory setups), which allowed localization of the nervous tissue (∼1µm effective voxel size); and high-resolution scans (performed with a synchrotron endstation), which imaged localized regions of 320x320x320 µm3 (176 nm effective voxel size).RESULTS: The contrast allowed us to follow the shape and the size changes of the ganglia, as well as to study their cellular components together with the cells and cellular projections of the periganglional space. Furthermore, it was possible to show the 3D network of the myenteric plexus and to quantify its volume within the samples.CONCLUSIONS: Phase-contrast X-ray tomography can be applied for volume analyses of the human ENS and to study tissue components in unstained paraffin-embedded tissue biopsies. This technique could potentially be used to study disease mechanisms, and to compare healthy and diseased tissues in clinical research.
  •  
4.
  • Sala, Simone, et al. (författare)
  • Dose-efficient multimodal microscopy of human tissue at a hard X-ray nanoprobe beamline
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - 1600-5775. ; 29:3
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray fluorescence microscopy performed at nanofocusing synchrotron beamlines produces quantitative elemental distribution maps at unprecedented resolution (down to a few tens of nanometres), at the expense of relatively long measuring times and high absorbed doses. In this work, a method was implemented in which fast low-dose in-line holography was used to produce quantitative electron density maps at the mesoscale prior to nanoscale X-ray fluorescence acquisition. These maps ensure more efficient fluorescence scans and the reduction of the total absorbed dose, often relevant for radiation-sensitive (e.g. biological) samples. This multimodal microscopy approach was demonstrated on human sural nerve tissue. The two imaging modes provide complementary information at a comparable resolution, ultimately limited by the focal spot size. The experimental setup presented allows the user to swap between them in a flexible and reproducible fashion, as well as to easily adapt the scanning parameters during an experiment to fine-tune resolution and field of view.
  •  
5.
  • Mohajerani, Pouyan, et al. (författare)
  • FMT-PCCT: Hybrid Fluorescence Molecular Tomography-X-Ray Phase-Contrast CT Imaging of Mouse Models
  • 2014
  • Ingår i: IEEE Transactions on Medical Imaging. - 1558-254X. ; 33:7, s. 1434-1446
  • Tidskriftsartikel (refereegranskat)abstract
    • The implementation of hybrid fluorescencemolecular tomography (FMT) and X-ray computed tomography (CT) has been shown to be a necessary development, not only for combining anatomical with functional and molecular contrast, but also for generating optical images of high accuracy. FMT affords highly sensitive 3-D imaging of fluorescence bio-distribution, but in stand-alone form it offers images of low resolution. It was shown that FMT accuracy significantly improves by considering anatomical priors from CT. Conversely, CT generally suffers from low soft tissue contrast. Therefore utilization of CT data as prior information in FMT inversion is challenging when different internal organs are not clearly differentiated. Instead, we combined herein FMT with emerging X-ray phase-contrast CT (PCCT). PCCT relies on phase shift differences in tissue to achieve soft tissue contrast superior to conventional CT. We demonstrate for the first time FMT-PCCT imaging of different animal models, where FMT and PCCT scans were performed in vivo and ex vivo, respectively. The results show that FMT-PCCT expands the potential of FMT in imaging lesions with otherwise low or no CT contrast, while retaining the cost benefits of CT and simplicity of hybrid device realizations. The results point to the most accurate FMT performance to date.
  •  
6.
  • Dreier, Till, et al. (författare)
  • Super-resolution X-ray imaging with hybrid pixel detectors using electromagnetic source stepping
  • 2020
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • With increasing demand for high-resolution X-ray images, the super-resolution method allows to estimate a single high-resolution image from several low-resolution images. Hybrid pixel detectors provide high-quality and low-resolution images, which makes them particularlywell suited for super-resolution. However, such detectors consist of a limited number of pixels at high cost. Applying super-resolution with hybrid pixel detectors shows that it is a viable method to obtain high-resolution images. The point-spread function of such detectors can be idealised to be 1 pixel, adding no blur into the image making such detectors the ideal choice for the application of super- resolution X-ray imaging. However, there are charge sharing effects between the pixels caused by the energy and impact position of incoming photons. Utilising an X-ray source, which allows magnetic stepping of the X-ray spot, several slightly shifted images can be obtained without requiring mechanical movements. Registering the shifts between individual images with sub-pixel precision allows to estimate a high-resolution image. With repeatable and equally spaced X-ray spot position patterns, sufficient information can be obtained with only a few images. In this paper, we present the application of super-resolution for X-ray imaging using a Pilatus 100K hybrid pixel detector from Dectris Ltd. and a prototype micro-focus X-ray source from Excillum AB. Moreover, we analyse the image quality for applications in X-ray radiography and tomography. Using a sufficient number of low-resolution images allows us to achieve an increase in resolution, without introducing significant blur or artefacts into the image. Here we quantify the effects on the quality of resulting super-resolution images using different methods of image interpolation, interpolation factors, shifts of the sample on the detector, and amount of low-resolution images.
  •  
7.
  • Schwab, Felix, et al. (författare)
  • Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue
  • 2013
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 23:3, s. 236-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: An experimental comparison of the contrast-to-noise ratio (CNR) between transmission and dark-field signals in grating-based X-ray imaging for ex-vivo murine lung tissue. Materials and Methods: Lungs from three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Background noise of transmission and dark-field signal was quantified by measuring the standard deviation in a region of interest (ROI) placed in a homogeneous area outside the specimen. Image contrast was quantified by measuring the signal range in rectangular ROIs placed in central and peripheral lung parenchyma. The relative contrast gain (RCG) of dark-field over transmission images was calculated as CNRDF /CNRT. Results: In all images, there was a trend for contrast-to-noise ratios of dark-field images (CNRDF) to be higher than for transmission images (CNRT) for all ROIs (median 61 vs. 38, p = 0.10), but the difference was statistically significant only for peripheral ROIs (61 vs. 32, p = 0.03). Median RCG was >1 for all Rats (1.84). RCG values were significantly smaller for central ROIs than for peripheral ROIs (1.34 vs. 2.43, p = 0.03). Conclusion: The contrast-to-noise ratio of dark-field images compares more favorably to the contrast-to-noise ratio of transmission images for peripheral lung regions as compared to central regions. For any specific specimen, a calculation of the RCG allows comparing which X-ray modality (dark-field or transmission imaging) produces better contrast-to-noise characteristics in a well-defined ROI.
  •  
8.
  • Yaroshenko, Andre, et al. (författare)
  • Grating-based X-ray dark-field imaging : a new paradigm in radiography
  • 2014
  • Ingår i: Current Radiology Reports. - : Springer Science and Business Media LLC. - 2167-4825. ; 2, s. 1-9
  • Forskningsöversikt (refereegranskat)abstract
    • Grating-based X-ray dark-field contrast is an emerging new imaging modality that is demonstrating particularly high potential for radiography. The signal in dark-field X-ray imaging is determined by small-angle X-ray scattering at structures typically below the spatial resolution of the imaging setup. Thus, this technique not only yields complementary information but also visualizes information that lies under the resolution limit for conventional, absorption-based radiography. Grating-based X-ray dark-field imaging has been shown to be feasible with both synchrotron radiation and conventional X-ray tubes. Lung, breast, and bone imaging have been identified as the applications promising the main impact, but other applications are on the horizon. Specifically, dark-field radiography has been used to detect pulmonary emphysema and assesses its regional distribution in mice and holds promise to improve the visualization of micro-calcifications in mammography and yields information about bone microstructure. Further technical developments are required to make the technique suitable for clinical use.
  •  
9.
  • Andersson, Mariam, et al. (författare)
  • Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure-function relationship
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 117:52, s. 33649-33659
  • Tidskriftsartikel (refereegranskat)abstract
    • Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.
  •  
10.
  • Dreier, Till, et al. (författare)
  • Improved resolution in x-ray tomography by super-resolution
  • 2021
  • Ingår i: Applied Optics. - 2155-3165. ; 60:20, s. 5783-5794
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, super-resolution imaging is described and evaluated for x-ray tomography and is compared with standard tomography and upscaling during reconstruction. Blurring is minimized due to the negligible point spread of photon counting detectors and an electromagnetically movable micro-focus x-ray spot. Scans are acquired in high and lowmagnification geometry, where the latter is used to minimize penumbral blurring fromthe x-ray source. Sharpness and level ofdetail can be significantly increased in reconstructed slices to the point where the source size becomes the limiting factor. The achieved resolution of the different methods is quantified and compared using biological samples via the edge spread function, modulation transfer function, and Fourier ring correlation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy