SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Clinical Medicine Radiology, Nuclear Medicine and Medical Imaging) ;pers:(Orlova Anna)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Clinical Medicine Radiology, Nuclear Medicine and Medical Imaging) > Orlova Anna

  • Resultat 1-10 av 139
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tolmachev, Vladimir, et al. (författare)
  • Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR In-111-DOTA-Z(EGFR:2377) Affibody molecule : aspect of the injected tracer amount
  • 2010
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 37:3, s. 613-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of epidermal growth factor receptor (EGFR) is a prognostic and predictive biomarker in a number of malignant tumours. Radionuclide molecular imaging of EGFR expression in cancer could influence patient management. However, EGFR expression in normal tissues might complicate in vivo imaging. The aim of this study was to evaluate if optimization of the injected protein dose might improve imaging of EGFR expression in tumours using a novel EGFR-targeting protein, the DOTA-Z(EGFR:2377) Affibody molecule. An anti-EGFR Affibody molecule, Z(EGFR:2377), was labelled with In-111 via the DOTA chelator site-specifically conjugated to a C-terminal cysteine. The affinity of DOTA-Z(EGFR:2377) for murine and human EGFR was measured by surface plasmon resonance. The cellular processing of In-111-DOTA-Z(EGFR:2377) was evaluated in vitro. The biodistribution of radiolabelled Affibody molecules injected in a broad range of injected Affibody protein doses was evaluated in mice bearing EGFR-expressing A431 xenografts. Site-specific coupling of DOTA provided a uniform conjugate possessing equal affinity for human and murine EGFR. The internalization of In-111-DOTA-Z(EGFR:2377) by A431 cells was slow. In vivo, the conjugate accumulated specifically in xenografts and in EGFR-expressing tissues. The curve representing the dependence of tumour uptake on the injected Affibody protein dose was bell-shaped. The highest specific radioactivity (lowest injected protein dose) provided a suboptimal tumour-to-blood ratio. The results of the biodistribution study were confirmed by gamma-camera imaging. The In-111-DOTA-Z(EGFR:2377) Affibody molecule is a promising tracer for radionuclide molecular imaging of EGFR expression in malignant tumours. Careful optimization of protein dose is required for high-contrast imaging of EGFR expression in vivo.
  •  
2.
  • Yin, Wen, 1993-, et al. (författare)
  • The Influence of Domain Permutations of an Albumin-Binding Domain-Fused HER2-Targeting Affibody-Based Drug Conjugate on Tumor Cell Proliferation and Therapy Efficacy
  • 2021
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923 .- 1999-4923. ; 13:11, s. 1974-1974
  • Tidskriftsartikel (refereegranskat)abstract
    • Human epidermal growth factor receptor 2 (HER2) is a clinically validated target for breast cancer therapy. Previously, a drug-fused HER2-targeting affinity protein construct successfully extended the survival of mice bearing HER2-expressing xenografts. The aim of this study was to evaluate the influence of the number and positioning of the protein domains in the drug conjugate. Seven HER2-targeting affibody-based constructs, including one or two affibody molecules (Z) with or without an albumin-binding domain (ABD), namely Z, Z-ABD, ABD-Z, Z-Z, Z-Z-ABD, Z-ABD-Z, and ABD-Z-Z, were evaluated on their effects on cell growth, in vivo targeting, and biodistribution. The biodistribution study demonstrated that the monomeric constructs had longer blood retention and lower hepatic uptake than the dimeric ones. A dimeric construct, specifically ABD-Z-Z, could stimulate the proliferation of HER2 expressing SKOV-3 cells in vitro and the growth of tumors in vivo, whereas the monomeric construct Z-ABD could not. These two constructs demonstrated a therapeutic effect when coupled to mcDM1; however, the effect was more pronounced for the non-stimulating Z-ABD. The median survival of the mice treated with Z-ABD-mcDM1 was 63 days compared to the 37 days for those treated with ABD-Z-Z-mcDM1 or for the control animals. Domain permutation of an ABD-fused HER2-targeting affibody-based drug conjugate significantly influences tumor cell proliferation and therapy efficacy. The monomeric conjugate Z-ABD is the most promising format for targeted delivery of the cytotoxic drug DM1.
  •  
3.
  • Garousi, Javad, et al. (författare)
  • Comparative Evaluation of Affibody Molecules for Radionuclide Imaging of in Vivo Expression of Carbonic Anhydrase IX
  • 2016
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 13:11, s. 3676-3687
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of the enzyme carbonic anhydrase IX (CAIX) is documented for chronically hypoxic malignant tumors as well as for normoxic renal cell carcinoma. Radionuclide molecular imaging of CAIX would be useful for detection of hypoxic areas in malignant tumors, for patients' stratification for CAIX-targeted therapies, and for discrimination of primary malignant and benign renal tumors. Earlier, we have reported feasibility of in vivo radionuclide based imaging of CAIX expressing tumors using Affibody molecules, small affinity proteins based on a non-immunoglobulin scaffold. In this study, we compared imaging properties of several anti-CAIX Affibody molecules having identical scaffold parts and competing for the same epitope on CAIX, but having different binding paratopes. Four variants were labeled using residualizing Tc-99m and nonresidualizing I-125 labels. All radiolabeled variants demonstrated high affinity detection of CAIX-expressing cell line SK-RC-52 in vitro and specific accumulation in SK-RC-52 xenografts in vivo. I-125-labeled conjugates demonstrated much lower radioactivity uptake in kidneys but higher radioactivity concentration in blood compared with Tc-99m-labeled counterparts. Although all variants cleared rapidly from blood and nonspecific compartments, there was noticeable difference in their biodistribution. The best variant for imaging of expression of CAIX in disseminated cancer was Tc-99m-(HE)(3)-ZCAIX:2 providing tumor uptake of 16.3 +/- 0.9% ID/g and tumor-to-blood ratio of 44 +/- 7 at 4 h after injection. For primary renal cell carcinoma, the most promising imaging candidate was I-125-ZCAIX:4 providing tumor-kidney ratio of 2.1 0.5. In conclusion, several clones of scaffold proteins should be evaluated to select the best variant for development of an imaging probe with optimal sensitivity for the intended application.
  •  
4.
  • Tolmachev, Vladimir, et al. (författare)
  • Optimal specific radioactivity of anti-HER2 Affibody molecules enables discrimination between xenografts with high and low HER2 expression levels
  • 2011
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 38:3, s. 531-539
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of the HER2 receptor is a biomarker for predicting those patients who may benefit from trastuzumab therapy. Radiolabelled Affibody molecules can be used to visualize HER2 expression in tumour xenografts with high sensitivity. However, previous studies demonstrated that the difference in uptake in xenografts with high and low HER2 expression levels is not proportional to the difference in expression levels. We hypothesized that discrimination between tumours with high and low HER2 expression may be improved by increasing the injected dose (reducing the specific activity) of the tracer. The influence of injected dose of anti-HER2 In-111-DOTA-Z(HER2) (342) Affibody molecule on uptake in SKOV-3 (high HER2 expression) and LS174T (low expression) xenografts was investigated. The optimal range of injected doses enabling discrimination between xenografts with high and low expression was determined. To verify this, tumour uptake was measured in mice carrying both SKOV-3 and LS174T xenografts after injection of either 1 or 15 mu g In-111-DOTA-Z(HER2:342). An increase in the injected dose caused a linear decrease in the radioactivity accumulation in the LS174T xenografts (low HER2 expression). For SKOV-3 xenografts, the dependence of the tumour uptake on the injected dose was less dramatic. The injection of 10-30 mu g In-111-DOTA-Z(HER2:342) per mouse led to the largest difference in uptake between the two types of tumour. Experiments in mice bearing two xenografts confirmed that the optimized injected dose enabled better discrimination of expression levels. Careful optimization of the injected dose of Affibody molecules is required for maximum discrimination between xenografts with high and low levels of HER2 expression. This information has potential relevance for clinical imaging applications.
  •  
5.
  • Ahlgren, Sara, 1979- (författare)
  • Molecular Radionuclide Imaging Using Site-specifically Labelled Recombinant Affibody Molecules : Preparation and Preclinical Evaluation
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Radionuclide molecular imaging is an emerging multidisciplinary technique that is used in modern medicine to visualise diseases at cellular and molecular levels. This thesis is based on five papers (I-V) and focuses on the development of site-specific radiolabelled recombinant anti-HER2 Affibody molecules and preclinical evaluations in vitro and in vivo of the labelled conjugates. This work is part of a preclinical development of an Affibody molecule-based tracer for molecular imaging of HER2 expressing tumours. Papers I and II report the evaluation of the Affibody molecule ZHER2:2395-C, site-specifically labelled with the radiometals 111In (for SPECT) and 57Co (as a surrogate for 55Co, suitable for PET applications) using a thiol reactive DOTA derivative as a chelator. Both conjugates demonstrated very suitable biodistribution properties, enabling high contrast imaging just a few hours after injection. Papers III and IV report the development and optimization of a technique for site-specific labelling of ZHER2:2395-C with 99mTc using an N3S chelating peptide sequence. 99mTc-ZHER2:2395-C demonstrated high and specific tumour uptake and rapid clearance of non-bound tracer from the blood, resulting in high tumour-to-non-tumour ratios shortly after injection, enabling high contrast imaging. In addition, in the study described in paper IV, freeze-dried kits previously developed for 99mTc-labelling were optimised, resulting in the development of a kit in which all the reagents and protein needed for labelling of ZHER2:2395-C with 99mTc were contained in a single vial. Paper V reports the evaluation of an anti-HER2 Affibody molecule, ABY-025, with a fundamentally re-engineered scaffold. Despite the profound re-engineering, the biodistribution pattern of 111In-ABY-025 was very similar to that of two variants of the parental molecule. It seems reasonable to believe that these results will also be applicable to Affibody molecules towards other targets. Hopefully, this work will also be helpful in the development of other small proteinaceous tracers.
  •  
6.
  • Dahlsson Leitao, Charles, et al. (författare)
  • Molecular Design of HER3-Targeting Affibody Molecules : Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 20:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody-based imaging of HER3 is a promising approach for patient stratification. We investigated the influence of a hydrophilic HEHEHE-tag ((HE)3-tag) and two different gallium-68/chelator-complexes on the biodistribution of Z08698 with the aim to improve the tracer for PET imaging. Affibody molecules (HE)3-Z08698-X and Z08698-X (X = NOTA, NODAGA) were produced and labeled with gallium-68. Binding specificity and cellular processing were studied in HER3-expressing human cancer cell lines BxPC-3 and DU145. Biodistribution was studied 3 h p.i. in Balb/c nu/nu mice bearing BxPC-3 xenografts. Mice were imaged 3 h p.i. using microPET/CT. Conjugates were stably labeled with gallium-68 and bound specifically to HER3 in vitro and in vivo. Association to cells was rapid but internalization was slow. Uptake in tissues, including tumors, was lower for (HE)3-Z08698-X than for non-tagged variants. The neutral [68Ga]Ga-NODAGA complex reduced the hepatic uptake of Z08698 compared to positively charged [68Ga]Ga-NOTA-conjugated variants. The influence of the chelator was more pronounced in variants without (HE)3-tag. In conclusion, hydrophilic (HE)3-tag and neutral charge of the [68Ga]Ga-NODAGA complex promoted blood clearance and lowered hepatic uptake of Z08698. [68Ga]Ga-(HE)3-Z08698-NODAGA was considered most promising, providing the lowest blood and hepatic uptake and the best imaging contrast among the tested variants.
  •  
7.
  • Rinne, Sara S., et al. (författare)
  • Influence of Residualizing Properties of the Radiolabel on Radionuclide Molecular Imaging of HER3 Using Affibody Molecules
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Human epidermal growth factor receptor type 3 (HER3) is an emerging therapeutic target in several malignancies. To select potential responders to HER3-targeted therapy, radionuclide molecular imaging of HER3 expression using affibody molecules could be performed. Due to physiological expression of HER3 in normal organs, high imaging contrast remains challenging. Due to slow internalization of affibody molecules by cancer cells, we hypothesized that labeling (HE)(3)-Z(HER3:08698)-DOTAGA affibody molecule with non-residualizing [I-125]-N-succinimidyl-4-iodobenzoate (PIB) label would improve the tumor-to-normal organs ratios compared to previously reported residualizing radiometal labels. The [I-125]I-PIB-(HE)(3)-Z(HER3:08698)-DOTAGA was compared side-by-side with [In-111]In-(HE)(3)-Z(HER3:08698)-DOTAGA. Both conjugates demonstrated specific high-affinity binding to HER3-expressing BxPC-3 and DU145 cancer cells. Biodistribution in mice bearing BxPC-3 xenografts at 4 and 24h pi showed faster clearance of the [I-125]I-PIB label compared to the indium-111 label from most tissues, except blood. This resulted in higher tumor-to-organ ratios in HER3-expressing organs for [I-125]I-PIB-(HE)(3)-Z(HER3:08698)-DOTAGA at 4 h, providing the tumor-to-liver ratio of 2.4 +/- 0.3. The tumor uptake of both conjugates was specific, however, it was lower for the [I-125]I-PIB label. In conclusion, the use of non-residualizing [I-125]I-PIB label for HER3-targeting affibody molecule provided higher tumor-to-liver ratio than the indium-111 label, however, further improvement in tumor uptake and retention is needed.
  •  
8.
  • Deyev, S., et al. (författare)
  • Comparative Evaluation of Two DARPin Variants : Effect of Affinity, Size, and Label on Tumor Targeting Properties
  • 2019
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 16:3, s. 995-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins that can be selected for binding to desirable molecular targets. High affinity and small size of DARPins render them promising probes for radionuclide molecular imaging. However, detailed knowledge on many factors influencing their imaging properties is still lacking. We have evaluated two human epidermal growth factor 2 (HER2)-specific DARPins with different size and binding properties. DARPins 9-29-H 6 and G3-H 6 were radiolabeled with iodine-125 and tricarbonyl technetium-99m and evaluated in vitro. A side-by-side comparison of biodistribution and tumor targeting was performed. HER2-specific tumor accumulation of G3-H 6 was demonstrated. A combination of smaller size and higher affinity resulted in a higher tumor uptake of G3-H 6 in comparison to 9-29-H 6 . Technetium-99m labeled G3-H 6 demonstrated a better biodistribution profile than 9-29-H 6 , with several-fold lower uptake in liver. Radioiodinated G3-H 6 showed the best tumor-to-organ ratios. The combined effect of affinity, molecular weight, scaffold composition, and nonresidualizing properties of iodine label provided radioiodinated G3-H 6 with high clinical potential for imaging of HER2.
  •  
9.
  • Honarvar, Hadis, et al. (författare)
  • Position for site-specific attachment of a DOTA chelator to synthetic affibody molecules has a different influence on the targeting properties of 68Ga-Compared to 111in-labeled conjugates
  • 2014
  • Ingår i: Molecular Imaging. - : SAGE Publications. - 1535-3508 .- 1536-0121. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules, small (7 kDa) scaffold proteins, are a promising class of probes for radionuclide molecular imaging. Radiolabeling of Affibody molecules with the positron-emitting nuclide 68Ga would permit the use of positron emission tomography (PET), providing better resolution, sensitivity, and quantification accuracy than single-photon emission computed tomography (SPECT). The synthetic anti-HER2 ZHER2:S1 Affibody molecule was conjugated with DOTA at the N-terminus, in the middle of helix 3, or at the Cterminus. The biodistribution of 68Ga-and 111In-labeled Affibody molecules was directly compared in NMRI nu/nu mice bearing SKOV3 xenografts. The position of the chelator strongly influenced the biodistribution of the tracers, and the influence was more pronounced for 68Ga-labeled Affibody molecules than for the 111In-labeled counterparts. The best 68Ga-labeled variant was 68Ga-[DOTA-A1]-ZHER2:S1, which provided a tumor uptake of 13 ± 1 %ID/g and a tumor to blood ratio of 39 ± 12 at 2 hours after injection. 111In-[DOTA-A1]-ZHER2:S1 and 111In-[DOTA-K58]-ZHER2:S1 were equally good at this time point, providing a tumor uptake of 15 to 16 %ID/g and a tumor to blood ratio in the range of 60 to 80. In conclusion, the selection of the best position for a chelator in Affibody molecules can be used for optimization of their imaging properties. This may be important for the development of Affibody-based and other protein-based imaging probes.
  •  
10.
  • Abouzayed, Ayman, et al. (författare)
  • The GRPR Antagonist [Tc-99m]Tc-maSSS-PEG(2)-RM26 towards Phase I Clinical Trial : Kit Preparation, Characterization and Toxicity
  • 2023
  • Ingår i: Diagnostics. - : MDPI AG. - 2075-4418. ; 13:9, s. 1611-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrin-releasing peptide receptors (GRPRs) are overexpressed in the majority of primary prostate tumors and in prostatic lymph node and bone metastases. Several GRPR antagonists were developed for SPECT and PET imaging of prostate cancer. We previously reported a preclinical evaluation of the GRPR antagonist [Tc-99m]Tc-maSSS-PEG2-RM26 (based on [D-Phe(6), Sta(13), Leu(14)-NH2]BBN(6-14)) which bound to GRPR with high affinity and had a favorable biodistribution profile in tumor-bearing animal models. In this study, we aimed to prepare and test kits for prospective use in an early-phase clinical study. The kits were prepared to allow for a one-pot single-step radiolabeling with technetium-99m pertechnetate. The kit vials were tested for sterility and labeling efficacy. The radiolabeled by using the kit GRPR antagonist was evaluated in vitro for binding specificity to GRPR on PC-3 cells (GRPR-positive). In vivo, the toxicity of the kit constituents was evaluated in rats. The labeling efficacy of the kits stored at 4 degrees C was monitored for 18 months. The biological properties of [Tc-99m]Tc-maSSS-PEG2-RM26, which were obtained after this period, were examined both in vitro and in vivo. The one-pot (gluconic acid, ethylenediaminetetraacetic acid, stannous chloride, and maSSS-PEG(2)-RM26) single-step radiolabeling with technetium-99m was successful with high radiochemical yields (>97%) and high molar activities (16-24 MBq/nmol). The radiolabeled peptide maintained its binding properties to GRPR. The kit constituents were sterile and non-toxic when tested in living subjects. In conclusion, the prepared kit is considered safe in animal models and can be further evaluated for use in clinics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 139
Typ av publikation
tidskriftsartikel (130)
forskningsöversikt (3)
doktorsavhandling (2)
recension (2)
annan publikation (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (100)
övrigt vetenskapligt/konstnärligt (39)
Författare/redaktör
Tolmachev, Vladimir (135)
Orlova, Anna, 1960- (67)
Mitran, Bogdan (54)
Vorobyeva, Anzhelika (45)
Löfblom, John (34)
visa fler...
Rinne, Sara S. (32)
Garousi, Javad (32)
Altai, Mohamed (31)
Ståhl, Stefan (26)
Eriksson Karlström, ... (22)
Oroujeni, Maryam, Ph ... (20)
Honarvar, Hadis (18)
Sandström, Mattias (15)
Rosestedt, Maria (15)
Andersson, Ken G. (15)
Sörensen, Jens (13)
Abouzayed, Ayman (13)
Schulga, Alexey (13)
Rosenström, Ulrika (12)
Frejd, Fredrik Y. (12)
Varasteh, Zohreh (12)
Westerlund, Kristina (11)
Chernov, Vladimir (10)
Perols, Anna (10)
Strand, Joanna (8)
Gräslund, Torbjörn (8)
Deyev, Sergey (8)
Bragina, Olga (8)
Leitao, Charles Dahl ... (7)
Zelchan, Roman (6)
Lundqvist, Hans (5)
Bodenko, Vitalina (5)
Larhed, Mats (5)
Borin, Jesper (5)
Hober, Sophia (5)
Rosik, Daniel (5)
Wållberg, Helena (5)
Selvaraju, Ram Kumar (5)
Buijs, Jos (5)
Malmberg, Jennie (5)
Hober, Sophia, Profe ... (4)
Feldwisch, Joachim (4)
Wennborg, Anders (4)
Lubberink, Mark (4)
Velikyan, Irina (4)
Sjöström, Anna (4)
Lindeberg, Gunnar (4)
Lindström, Elin (4)
Loftenius, Annika (4)
visa färre...
Lärosäte
Uppsala universitet (133)
Kungliga Tekniska Högskolan (86)
Lunds universitet (5)
Språk
Engelska (139)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (139)
Naturvetenskap (15)
Teknik (8)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy