SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Radiologi och bildbehandling) ;pers:(Sörensen Jens)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Radiologi och bildbehandling) > Sörensen Jens

  • Resultat 1-10 av 112
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Regula, Naresh, et al. (författare)
  • Comparison of 68Ga-PSMA-11 PET/CT with 11C-acetate PET/CT in re-staging of prostate cancer relapse
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Positron emission tomography (PET) imaging is used to localize recurrent disease in prostate cancer (PCa). The tracer 68Ga-PSMA-11 visualizes lesions overexpressing prostate-specific membrane antigen (PSMA), while 11C-acetate visualizes lesions with increased anabolic metabolism. The aim of this study was to compare the performance of PSMA-PET and acetate-PET in re-staging patients with biochemical relapse. Thirty PCa patients with prostate-specific antigen (PSA) relapse after primary curative therapy were prospectively evaluated. PET/CT examinations using 11C-acetate and 68Ga-PSMA-11 were performed. Identified lesions were categorized according to anatomical location and PET measurements were correlated with PSA at time of scan. Tumour lesions showed higher semi-quantitative uptake values on PSMA-PET than acetate-PET. PSMA-PET identified more lesions in 11 patients, fewer lesions in eight patients, and identical number of lesions in 11 patients. This study indicates better diagnostic performance of PSMA-PET, particularly in detecting lymph node (81% vs 60%, p=0.02) and bone metastasis (95% vs 61%, p=0.0001) compared to acetate-PET. However, 38% of PSMA-expressing metastases appear to be metabolically inactive and 15% of metabolically active metastases lack PSMA expression. Addition of PET with a metabolic tracer, such as 11C-acetate, might be beneficial before making treatment decisions.
  •  
2.
  • Danfors, Torsten, 1964- (författare)
  • 11C Molecular Imaging in Focal Epilepsy
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Epilepsy is a common neurological disease affecting 6 million people in Europe. Early prevention and accurate diagnosis and treatment are of importance to obtain seizure freedom. In this thesis new applications of carbon-11-labelled tracers in PET and autoradiographic studies were explored in focal epilepsy.Patients with low-grade gliomas often experience epileptic seizures. A retrospective PET-study assessing seizure activity, metabolic rate measured with 11C-methionine and other known prognostic factors was performed in patients with glioma. No correlation was found between seizure activity and uptake of methionine. The presence and termination of early seizures was a favourable prognostic factor.Activation of the neurokinin-1 (NK1) receptor by substance P (SP) induces epileptic activity. PET with the NK1 receptor antagonist GR205171 was performed in patients with temporal lobe epilepsy (TLE) and healthy controls. In TLE patients an increased NK1 receptor availability was found in both hemispheres, most pronounced in anterior cingulate gyrus ipsilateral to seizure onset. A positive correlation between NK1 receptors and seizure frequency was observed in ipsilateral medial structures consistent with an intrinsic network using the NK1-SP receptor system for transmission of seizure activity.The uptake of 18F-fluoro-deoxy-glucose (FDG) is related to cerebral blood flow (CBF). Previously, methods to estimate blood flow from dynamic PET data have been described. A retrospective study was conducted in 15 patients undergoing epilepsy surgery investigation, including PET with 11C-FDG and 11C-Flumazenil (FMZ). The dynamic FMZ dataset and pharmacokinetic modeling with a multilinear reference tissue model were used to determine images of relative CBF. Agreement between data of FDG and CBF was analyzed showing a close association between interictal brain metabolism and relative CBF.Epilepsy often occurs after traumatic brain injuries. Changes in glia and inhibitory neuronal cells contribute to the chain of events leading to seizures. Autoradiography with 11C-PK11195, 11C-L-deprenyl and 11C-Flumazenil in an animal model of posttraumatic epilepsy studied the temporal and spatial distribution of microglia, astrocytes and GABAergic neurons. Results showed an instant increase in microglial activity that subsequently normalized, a late formation of astrogliosis and an instant and prolonged decease in GABA binding. The model can be used to visualize pathophysiological events during the epileptogenesis.
  •  
3.
  • Häggström, Ida, 1982-, et al. (författare)
  • Semi-automatic tumour segmentation by selective navigation in a three-parameter volume, obtained by voxel-wise kinetic modelling of C-11-acetate
  • 2010
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 139:1-3, s. 214-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Positron emission tomography (PET) is increasingly used for delineation of tumour tissue in, for example, radiotherapy treatment planning. The most common method used is to outline volumes with a certain per cent uptake over background in a static image. However, PET data can also be collected dynamically and analysed by kinetic models, which potentially represent the underlying biology better. In the present study, a three-parameter kinetic model was used for voxel-wise evaluation of C-11-acetate data of head/neck tumours. These parameters which represent the tumour blood volume, the uptake rate and the clearance rate of the tissue were derived for each voxel using a linear regression method and used for segmentation of active tumour tissue. This feasibility study shows that it is possible to segment images based on derived model parameters. There is, however, room for improvements concerning the PET data acquisition, noise reduction and the kinetic modelling. In conclusion, this early study indicates a strong potential of the method even though no 'true' tumour volume was available for validation.
  •  
4.
  • Lilja, Johan, 1977- (författare)
  • [18F]Flutemetamol PET image processing, visualization and quantification targeting clinical routine
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer’s disease (AD) is the leading cause of dementia and is alone responsible for 60-70% of all cases of dementia. Though sharing clinical symptoms with other types of dementia, the hallmarks of AD are the abundance of extracellular depositions of β-amyloid (Aβ) plaques, intracellular neurofibrillary tangles of hyper phosphorylated tau proteins and synaptic depletion. The onset of the physiological hallmarks may precede clinical symptoms with a decade or more, and once clinical symptoms occur it may be difficult to separate AD from other types of dementia based on clinical symptoms alone. Since the introduction of radiolabeled Aβ tracer substances for positron emission tomography (PET) imaging it is possible to image the Aβ depositions in-vivo, strengthening the confidence in the diagnosis. Because the accumulation of Aβ may occur years before the first clinical symptoms are shown and even reach a plateau, Aβ PET imaging may not be feasible for disease progress monitoring. However, a negative scan may be used to rule out AD as the underlying cause to the clinical symptoms. It may also be used as a predictor to evaluate the risk of developing AD in patients with mild cognitive impairment (MCI) as well as monitoring potential effects of anti-amyloid drugs.Though currently validated for dichotomous visual assessment only, there is evidence to suggest that quantification of Aβ PET images may reduce inter-reader variability and aid in the monitoring of treatment effects from anti-amyloid drugs.The aim of this thesis was to refine existing methods and develop new ones for processing, quantification and visualization of Aβ PET images to aid in the diagnosis and monitoring of potential treatment of AD in clinical routine. Specifically, the focus for this thesis has been to find a way to fully automatically quantify and visualize a patient’s Aβ PET image in such way that it is presented in a uniform way and show how it relates to what is considered normal. To achieve the aim of the thesis registration algorithms, providing the means to register a patient’s Aβ PET image to a common stereotactic space avoiding the bias of different uptake patterns for Aβ- and Aβ+ images, a suitable region atlas and a 3-dimensional stereotactic surface projections (3D SSP) method, capable of projecting cortical activity onto the surface of a 3D model of the brain without sampling white matter, were developed and evaluated.The material for development and testing comprised 724 individual amyloid PET brain images from six distinct cohorts, ranging from healthy volunteers to definite AD. The new methods could be implemented in a fully automated workflow and were found to be highly accurate, when tested by comparisons to Standards of Truth, such as defining regional uptake from PET images co-registered to magnetic resonance images, post-mortem histopathology and the visual consensus diagnosis of imaging experts.
  •  
5.
  • Aarnio, Mikko (författare)
  • Visualization of Peripheral Pain Generating Processes and Inflammation in Musculoskeletal Tissue using [11C]-D-deprenyl PET
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • An objective visualization and quantification of pain-generating processes in the periphery would alter pain diagnosis and represent an important paradigm shift in pain research. Positron emission tomography (PET) radioligand [11C]-D-deprenyl has shown an elevated uptake in painful inflammatory arthritis and whiplash-associated disorder. However, D-Deprenyl’s molecular binding target and uptake mechanism in inflammation and musculoskeletal injuries are still unknown. The present thesis aimed to gain insight into the mechanisms of D-deprenyl binding and uptake and to verify whether pain-associated sites and inflammation in acute musculoskeletal injury could be visualized, objectively quantified and followed over time with [11C]-D-deprenyl PET-computed tomography (PET/CT).To identify the D-deprenyl binding target, a high-throughput analysis and competitive radioligand binding studies were performed. D-deprenyl inhibited monoamine oxidase A (MAO-A) activity by 55%, MAO-B activity by 99% and angiotensin-converting enzyme (ACE) by 70%, which identified these enzymes as higher-affinity targets. Furthermore, radioligand receptor binding assays pointed favorably towards the concept of MAO-B as the primary target. To investigate the biochemical characteristics of the binding site, we used radioligand binding assays to assess differences in the binding profile in inflamed human synovial membranes exhibiting varying levels of inflammation. D-deprenyl bound to a single, saturable population of membrane-bound protein in synovial membrane homogenates and the level of inflammation correlated with an increase in D-deprenyl binding affinity.To verify whether D-deprenyl can visualize pain-generating processes, patients with musculoskeletal injuries were investigated and followed-up with [11C]-D-deprenyl PET/CT. In the study of eight patients with ankle sprain, the molecular aspects of inflammation and tissue injury could be visualized, objectively quantified and followed over time with [11C]-D-deprenyl PET/CT. The pain coexisted with increased [11C]-D-deprenyl uptake. In the study of 16 whiplash patients, an altered [11C]-D-deprenyl uptake in the cervical bone structures and facet joints was associated with subjective pain levels and self-rated disability.To further evaluate D-Deprenyl’s usefulness as a marker of inflammation, three PET tracers were compared in an animal PET/CT study. Preliminary findings showed that [11C]-D-deprenyl had an almost identical uptake pattern when compared with [11C]-L-deprenyl. The two deprenyl enantiomers showed no signs of specific binding or trapping and therefore may not be useful to study further in models of inflammatory pain, surgical pain, or both.This thesis demonstrates that D-deprenyl visualizes painful inflammation in musculoskeletal injuries and that the probable underlying mechanism of [11C]-D-deprenyl uptake is binding to MAO.
  •  
6.
  • Falk Delgado, Anna (författare)
  • Preoperative MRI and PET in suspected low-grade gliomas : Radiological, neuropathological and clinical intersections
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Gliomas are neuroepithelial tumours classified by cell type and grade. In adults, low-grade gliomas are comprised mainly of astrocytomas and oligodendrogliomas grade II. The aim was to non-invasively characterise suspected low-grade gliomas through use of 11C-methionine-PET and physiological MRI in order to facilitate treatment decisions.Materials and methods: Patients with suspected low-grade glioma were prospectively and consecutively included after referral to the Neurosurgical Department, Uppsala University Hospital, between February 2010 and February 2014. All patients underwent morphological MRI, perfusion MRI, diffusion MRI and 11C-methionine PET. The institutional review board approved the study, and written informed consent was obtained prior to participation from each patient.Results: 11C-methionine PET hot spot regions corresponded spatially with regions of maximum relative cerebral blood volume in dynamic susceptibility contrast (DSC) perfusion MRI. The skewness of the transfer constantin dynamic contrast-enhanced (DCE) perfusion MRI, and the standard deviation of relative cerebral blood flow in DSC perfusion MRI could most efficiently discriminate between glioma grades II and III. In diffusion MRI, tumour fractional anisotropy differed between suspected low-grade gliomas of different neuropathological types. Quantitative diffusion tensor tractography was applicable for the evaluation of tract segment infiltration.Conclusion: PET and physiological MRI are able to characterise low-grade gliomas and are promising tools for guiding therapy and clinical decisions before neuropathological diagnosis has been obtained.
  •  
7.
  •  
8.
  • Fällmar, David, 1980-, et al. (författare)
  • Validation of true low-dose 18F-FDG PET of the brain
  • 2016
  • Ingår i: American Journal of Nuclear Medicine and Molecular Imaging. - Madison, USA : e-Century Publishing Corporation. - 2160-8407. ; 6:5, s. 269-276
  • Tidskriftsartikel (refereegranskat)abstract
    • The dosage of 18F-FDG must be sufficient to ensure adequate PET image quality. For younger patients and research controls, the lowest possible radiation dose should be used. The purpose of this study was to find a protocol for FDG-PET of the brain with reduced radiation dose and preserved quantitative characteristics. Eight patients with neurodegenerative disorders and nine controls (n=17) underwent FDG-PET/CT twice on separate occasions, first with normal-dose (3 MBq/kg), and second with low-dose (0.75 MBq/kg, 25% of the original). Five additional controls (total n=22) underwent FDG-PET twice, using normal-dose and ultra-low-dose (0.3 MBq/kg, 10% of original). All subjects underwent MRI. Ten-minute summation images were spatially normalized and intensity normalized. Regional standard uptake value ratios (SUV-r) were calculated using an automated atlas. SUV-r values from the normal- and low-dose images were compared pairwise. No clinically significant bias was found in any of the three groups. The mean absolute difference in regional SUV-r values was 0.015 (1.32%) in controls and 0.019 (1.67%) in patients. The ultra-low-dose protocol produced a slightly higher mean difference of 0.023 (2.10%). The main conclusion is that 0.75 MBq/kg (56 MBq for a 75-kg subject) is a sufficient FDG dose for evaluating regional SUV-ratios in brain PET scans in adults with or without neurodegenerative disease, resulting in a reduction of total PET/CT effective dose from 4.54 to 1.15 mSv. The ultra-low-dose (0.5 mSv) could be useful in research studies requiring serial PET in healthy controls or children.
  •  
9.
  • Heurling, Kerstin, 1982- (författare)
  • Characterization of [18F]flutemetamol binding properties : A β-amyloid PET imaging ligand
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The criteria for diagnosing Alzheimer’s disease (AD) have recently been revised to include the use of biomarkers for the in vivo presence of β-amyloid, one of the neuropathological hallmarks of AD. Examples of such biomarkers are positron emission tomography (PET) β-amyloid specific ligands, including [18F]flutemetamol. The aim of this thesis was to characterize the binding properties of [18F]flutemetamol from a tracer kinetic perspective as well as by validating binding measures through comparison with tissue pathology assessments. The applicability of previously developed kinetic models of tracer binding for voxel-based analysis was examined and compared to arterial input compartment modelling, the “gold standard” for PET quantification. Several voxel-based methods were found to exhibit high correlations with compartment modelling, including the semi-quantitative standardized uptake value ratio (SUVR). The kinetic components of [18F]flutemetamol uptake were also investigated without model assumptions using the data driven method spectral analysis, with binding to β-amyloid shown to relate to a slow kinetic component. The same component was also found to predominate in the uptake of white matter, known to be free of β-amyloid accumulation. White matter uptake was however possible to separate from β-amyloid binding based on the relative contribution of the slow component to the total volume of distribution. Uptake of [18F]flutemetamol as quantified using SUVR or assessed visually was found to correlate well with tissue pathology assessments. Classifying the brains of 68 deceased subjects who had undergone [18F]flutemetamol PET scanning ante mortem, based on the spatial distribution of β-amyloid according to pre-defined phases, revealed that abnormal uptake patterns of [18F]flutemetamol were only certain to be found in the last phase of β-amyloid accumulation. In the same cohort however, [18F]flutemetamol was also shown to accurately distinguish between subjects with AD and non-AD dementia. While this supports the use of [18F]flutemetamol in clinical settings for ruling out AD, the association of abnormal [18F]flutemetamol uptake to late phases of β-amyloid accumulation may limit the detection of early accumulation and pre-clinical stages of AD. It remains to be investigated whether application of voxel-based methods and slow component filtering may increase sensitivity, particularly in the context of clinical trials.
  •  
10.
  • Jonasson, My (författare)
  • Towards Clinical Implementation of Dynamic Positron Emission Tomography in Neurodegenerative Diseases
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurodegenerative disorders worldwide. Positron emission tomography (PET), together with suitable biomarkers, can aid in the clin-ical evaluation as well as in research investigations of these diseases. Straightforward and quantitative assessments of the parameters of inter-est estimated on a voxel-level, as parametric images, are possible when PET data is acquired over time. Prerequisites to facilitate clinical use of dynamic PET are simplified analysis methods and scan protocols suita-ble for clinical routine.The aim of this thesis was to validate simplified analysis methods, suitable for clinical use, for quantification of dopamine transporter (DAT) availability in patients with parkinsonism using [11C]PE2I PET and tau accumulation in AD patients with [18F]THK5317 PET.The included subjects comprised of both healthy controls and pa-tients with parkinsonism, AD or mild cognitive impairment and each subject underwent a dynamic PET scan with either [11C]PE2I or [18F]THK5317. Models for quantitative voxel-based analysis, resulting in parametric images of tracer binding and overall brain function, were validated in both patients and controls. These parametric methods were compared to region-based values acquired using both plasma- and refer-ence-input models. Clinically feasible scan durations were evaluated for both [11C]PE2I and [18F]THK5317, and a clustering method to obtain a reference time activity curve directly from the dynamic PET data was validated. Furthermore, images of DAT availability and overall brain functional activity, generated from one single dynamic [11C]PE2I PET scan, were compared to a dual-scan approach using [123I]FP-CIT single photon emission computed tomography (SPECT) and [18F]FDG PET, for differential diagnosis of patient with parkinsonism.Study I-III supply valuable information on the feasibility of dynamic [11C]PE2I in a clinical setting for differential diagnosis of parkinsonian disorders, by having easily accessible images of DAT availability and overall brain functional activity. The work in study IV-V showed that reference methods can be used for quantification of tau accumulation, and suggests that simplified analysis methods and shorter scan durations can be applied to further facilitate applications of dynamic [18F]THK5317 PET.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 112
Typ av publikation
tidskriftsartikel (93)
doktorsavhandling (10)
annan publikation (4)
forskningsöversikt (3)
konferensbidrag (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (73)
övrigt vetenskapligt/konstnärligt (39)
Författare/redaktör
Lubberink, Mark (52)
Tolmachev, Vladimir (22)
Kero, Tanja (18)
Antoni, Gunnar (12)
Velikyan, Irina (12)
visa fler...
Lindman, Henrik (11)
Lindström, Elin (10)
Orlova, Anna, 1960- (9)
Feldwisch, Joachim (9)
Sandström, Mattias (8)
Johansson, Silvia (8)
Ahlström, Håkan (7)
Chernov, Vladimir (7)
Velikyan, Irina, 196 ... (7)
Lilja, Johan (6)
Alhuseinalkhudhur, A ... (6)
Frejd, Fredrik Y. (6)
Jonasson, My (6)
Danfors, Torsten (6)
Zelchan, Roman (5)
Wassberg, Cecilia (5)
Iyer, Victor (5)
Carlsson, Jörgen (5)
Lindsjö, Lars (5)
Appel, Lieuwe (4)
Orlova, Anna (4)
Mitran, Bogdan (4)
Häggman, Michael (4)
Larsson, Elna-Marie (4)
Långström, Bengt (4)
Nordberg, Agneta (4)
Vorobyeva, Anzhelika (4)
Wall, Anders (4)
Sundin, Anders, 1954 ... (4)
Medvedeva, Anna (4)
Altai, Mohamed (3)
Rinne, Sara S. (3)
Knuuti, Juhani (3)
Karlsson, Mikael (3)
Wikström, Gerhard (3)
Rosengren, Sara (3)
Nyholm, Dag (3)
Wennborg, Anders (3)
Widström, Charles (3)
Feldwisch, J (3)
Eriksson, Barbro (3)
Flachskampf, Frank, ... (3)
Wennborg, A. (3)
Granstam, Sven-Olof, ... (3)
visa färre...
Lärosäte
Uppsala universitet (111)
Karolinska Institutet (9)
Umeå universitet (8)
Kungliga Tekniska Högskolan (4)
Göteborgs universitet (2)
Lunds universitet (2)
visa fler...
Örebro universitet (1)
visa färre...
Språk
Engelska (112)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (112)
Naturvetenskap (2)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy