SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Farmaceutiska vetenskaper) ;pers:(Hooker Andrew C.)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Farmaceutiska vetenskaper) > Hooker Andrew C.

  • Resultat 1-10 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Papathanasiou, Theodoros, et al. (författare)
  • Feasibility of Exposure-Response Analyses for Clinical Dose-Ranging Studies of Drug Combinations
  • 2018
  • Ingår i: AAPS Journal. - : SPRINGER. - 1550-7416. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The exposure-response relationship of combinatory drug effects can be quantitatively described using pharmacodynamic interaction models, which can be used for the selection of optimal dose combinations. The aim of this simulation study was to evaluate the reliability of parameter estimates and the probability for accurate dose identification for various underlying exposure-response profiles, under a number of different phase II designs. An efficacy variable driven by the combined exposure of two theoretical compounds was simulated and model parameters were estimated using two different models, one estimating all parameters and one assuming that adequate previous knowledge for one drug is readily available. Estimation of all pharmacodynamic parameters under a realistic, in terms of sample size and study design, phase II trial, proved to be challenging. Inaccurate estimates were found in all exposure-response scenarios, except for situations where no pharmacodynamic interaction was present, with the drug potency and interaction parameters being the hardest to estimate. When previous knowledge of the exposure-response relationship of one of the monocomponents is available, such information should be utilized, as it enabled relevant improvements in parameter estimation and in correct dose identification. No general trends for classification of the performance of the tested study designs across different scenarios could be identified. This study shows that pharmacodynamic interactions models can be used for the exposure-response analysis of clinical endpoints especially when accompanied by appropriate dose selection in regard to the expected drug potencies and appropriate trial size and if information regarding the exposure-response profile of one monocomponent is available.
  •  
2.
  •  
3.
  • Kågedal, Matts, et al. (författare)
  • A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066-Estimating occupancy in the absence of a reference region
  • 2013
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 82, s. 160-169
  • Tidskriftsartikel (refereegranskat)abstract
    • AZD2066 is a new chemical entity pharmacologically characterized as a selective, negative allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). Antagonism of mGluR5 has been implicated in relation to various diseases such as anxiety, depression, and pain disorders. To support translation from preclinical results and previous experiences with this target in man, a positron emission tomography study was performed to estimate the relationship between AZD2066 plasma concentrations and receptor occupancy in the human brain, using the mGluR5 radioligand [C-11]-ABP688. The study involved PET scans on 4 occasions in 6 healthy volunteers. The radioligand was given as a tracer dose alone and following oral treatment with different doses of AZD2066. The analysis was based on the total volume of distribution derived fro m each PET-assessment. A non-linear mixed effects model was developed where ten delineated brain regions of interest from all PET scans were included in one simultaneous fit. For comparison the analysis was also performed according to a method described previously by Lassen et al. (1995). The results of the analysis showed that the total volume of distribution decreased with increasing drug concentrations in all regions with an estimated Kipl of 1170 nM. Variability between individuals and occasions in non-displaceable volume of distribution could explain most of the variability in the total volume of distribution. The Lassen approach provided a similar estimate for Kipl, but the variability was exaggerated and difficult to interpret.
  •  
4.
  • Bergstrand, Martin, 1977-, et al. (författare)
  • Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models
  • 2011
  • Ingår i: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 13:2, s. 143-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Informative diagnostic tools are vital to the development of useful mixed-effects models. The Visual Predictive Check (VPC) is a popular tool for evaluating the performance of population PK and PKPD models. Ideally, a VPC will diagnose both the fixed and random effects in a mixed-effects model. In many cases, this can be done by comparing different percentiles of the observed data to percentiles of simulated data, generally grouped together within bins of an independent variable. However, the diagnostic value of a VPC can be hampered by binning across a large variability in dose and/or influential covariates. VPCs can also be misleading if applied to data following adaptive designs such as dose adjustments. The prediction-corrected VPC (pcVPC) offers a solution to these problems while retaining the visual interpretation of the traditional VPC. In a pcVPC, the variability coming from binning across independent variables is removed by normalizing the observed and simulated dependent variable based on the typical population prediction for the median independent variable in the bin. The principal benefit with the pcVPC has been explored by application to both simulated and real examples of PK and PKPD models. The investigated examples demonstrate that pcVPCs have an enhanced ability to diagnose model misspecification especially with respect to random effects models in a range of situations. The pcVPC was in contrast to traditional VPCs shown to be readily applicable to data from studies with a priori and/or a posteriori dose adaptations.
  •  
5.
  • Nyberg, Joakim, 1978- (författare)
  • Practical Optimal Experimental Design in Drug Development and Drug Treatment using Nonlinear Mixed Effects Models
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The cost of releasing a new drug on the market has increased rapidly in the last decade. The reasons for this increase vary with the drug, but the need to make correct decisions earlier in the drug development process and to maximize the information gained throughout the process is evident. Optimal experimental design (OD) describes the procedure of maximizing relevant information in drug development and drug treatment processes. While various optimization criteria can be considered in OD, the most common is to optimize the unknown model parameters for an upcoming study. To date, OD has mainly been used to optimize the independent variables, e.g. sample times, but it can be used for any design variable in a study. This thesis addresses the OD of multiple continuous or discrete design variables for nonlinear mixed effects models. The methodology for optimizing and the optimization of different types of models with either continuous or discrete data are presented and the benefits of OD for such models are shown. A software tool for optimizing these models in parallel is developed and three OD examples are demonstrated: 1) optimization of an intravenous glucose tolerance test resulting in a reduction in the number of samples by a third, 2) optimization of drug compound screening experiments resulting in the estimation of nonlinear kinetics and 3) an individual dose-finding study for the treatment of children with ciclosporin before kidney transplantation resulting in a reduction in the number of blood samples to ~27% of the original number and an 83% reduction in the study duration. This thesis uses examples and methodology to show that studies in drug development and drug treatment can be optimized using nonlinear mixed effects OD. This provides a tool than can lower the cost and increase the overall efficiency of drug development and drug treatment.
  •  
6.
  • Silber, Hanna E., et al. (författare)
  • Optimization of the intravenous glucose tolerance test in T2DM patients using optimal experimental design
  • 2009
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 36:3, s. 281-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Intravenous glucose tolerance test (IVGTT) provocations are informative, but complex and laborious, for studying the glucose-insulin system. The objective of this study was to evaluate, through optimal design methodology, the possibilities of more informative and/or less laborious study design of the insulin modified IVGTT in type 2 diabetic patients. A previously developed model for glucose and insulin regulation was implemented in the optimal design software PopED 2.0. The following aspects of the study design of the insulin modified IVGTT were evaluated; (1) glucose dose, (2) insulin infusion, (3) combination of (1) and (2), (4) sampling times, (5) exclusion of labeled glucose. Constraints were incorporated to avoid prolonged hyper- and/or hypoglycemia and a reduced design was used to decrease run times. Design efficiency was calculated as a measure of the improvement with an optimal design compared to the basic design. The results showed that the design of the insulin modified IVGTT could be substantially improved by the use of an optimized design compared to the standard design and that it was possible to use a reduced number of samples. Optimization of sample times gave the largest improvement followed by insulin dose. The results further showed that it was possible to reduce the total sample time with only a minor loss in efficiency. Simulations confirmed the predictions from PopED. The predicted uncertainty of parameter estimates (CV) was low in all tested cases, despite the reduction in the number of samples/subject. The best design had a predicted average CV of parameter estimates of 19.5%. We conclude that improvement can be made to the design of the insulin modified IVGTT and that the most important design factor was the placement of sample times followed by the use of an optimal insulin dose. This paper illustrates how complex provocation experiments can be improved by sequential modeling and optimal design.
  •  
7.
  • Ueckert, Sebastian, 1983-, et al. (författare)
  • Challenges and potential of optimal design in late phase clinical trials through application in Alzheimer’s disease
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Optimal design is a methodology that can be a valuable tool for the planning of clinical studies. Current applications however, are largely limited to early phases of the drug development process. The increasing complexity in late phase trials is a major reason why optimal design is not applied at these stages. This work uses the example of Alzheimer's disease to investigate challenges and potential of applying optimal design in late phase clinical trials.Information from several sources was used to construct a disease progression model for Alzheimer's disease. The resulting model was used to optimize the study design of an Alzheimer's trial for three distinct metrics: maximal information, minimal number of samples and maximal power to detect a drug effect. Challenges encountered and addressed during the implementation included covariates, dropout and clinical constraints.Depending on the optimization criterion used, the optimal designs had 35% a higher efficiency, needed 33% fewer samples to obtain the same amount of information or required 70% fewer individuals to achieve 80% power compared to the reference design.Optimal design can improve the design and therefore reduce the costs of late phase trials. Several tools and techniques have been identified to address the main challenges connected to this application.
  •  
8.
  • Aoki, Yasunori, 1982-, et al. (författare)
  • PopED lite : an optimal design software for preclinical pharmacokinetic and pharmacodynamic studies
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Optimal experimental design approaches are seldom used in pre-clinical drug discovery. Main reasons for this lack of use are that available software tools require relatively high insight in optimal design theory, and that the design-execution cycle of in vivo experiments is short, making time-consuming optimizations infeasible. We present the publicly available software PopED lite in order to increase the use of optimal design in pre-clinical drug discovery. PopED lite is designed to be simple, fast and intuitive. Simple, to give many users access to basic optimal design calculations. Fast, to fit the short design-execution cycle and allow interactive experimental design (test one design, discuss proposed design, test another design, etc). Intuitive, so that the input to and output from the software can easily be understood by users without knowledge of the theory of optimal design. In this way, PopED lite is highly useful in practice and complements existing tools. Key functionality of PopED lite is demonstrated by three case studies from real drug discovery projects. 
  •  
9.
  • Aoki, Yasunori, et al. (författare)
  • PopED lite: an optimal design software for preclinical pharmacokinetic and pharmacodynamic studies
  • 2016
  • Ingår i: Computer Methods and Programs in Biomedicine. - : Elsevier BV. - 0169-2607 .- 1872-7565. ; 127, s. 126-143
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and ObjectiveOptimal experimental design approaches are seldom used in preclinical drug discovery. The objective is to develop an optimal design software tool specifically designed for preclinical applications in order to increase the efficiency of drug discovery in vivo studies.MethodsSeveral realistic experimental design case studies were collected and many preclinical experimental teams were consulted to determine the design goal of the software tool. The tool obtains an optimized experimental design by solving a constrained optimization problem, where each experimental design is evaluated using some function of the Fisher Information Matrix. The software was implemented in C++ using the Qt framework to assure a responsive user-software interaction through a rich graphical user interface, and at the same time, achieving the desired computational speed. In addition, a discrete global optimization algorithm was developed and implemented.ResultsThe software design goals were simplicity, speed and intuition. Based on these design goals, we have developed the publicly available software PopED lite (http://www.bluetree.me/PopED_lite). Optimization computation was on average, over 14 test problems, 30 times faster in PopED lite compared to an already existing optimal design software tool. PopED lite is now used in real drug discovery projects and a few of these case studies are presented in this paper.ConclusionsPopED lite is designed to be simple, fast and intuitive. Simple, to give many users access to basic optimal design calculations. Fast, to fit a short design-execution cycle and allow interactive experimental design (test one design, discuss proposed design, test another design, etc). Intuitive, so that the input to and output from the software tool can easily be understood by users without knowledge of the theory of optimal design. In this way, PopED lite is highly useful in practice and complements existing tools.
  •  
10.
  • Aoki, Yasunori, et al. (författare)
  • Preconditioning of Nonlinear Mixed Effects Models for Stabilisation of Variance-Covariance Matrix Computations
  • 2016
  • Ingår i: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 18:2, s. 505-518
  • Tidskriftsartikel (refereegranskat)abstract
    • As the importance of pharmacometric analysis increases, more and more complex mathematical models are introduced and computational error resulting from computational instability starts to become a bottleneck in the analysis. We propose a preconditioning method for non-linear mixed effects models used in pharmacometric analyses to stabilise the computation of the variance-covariance matrix. Roughly speaking, the method reparameterises the model with a linear combination of the original model parameters so that the Hessian matrix of the likelihood of the reparameterised model becomes close to an identity matrix. This approach will reduce the influence of computational error, for example rounding error, to the final computational result. We present numerical experiments demonstrating that the stabilisation of the computation using the proposed method can recover failed variance-covariance matrix computations, and reveal non-identifiability of the model parameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy