SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Immunologi inom det medicinska området) ;pers:(Blom Anna M.)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Immunologi inom det medicinska området) > Blom Anna M.

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Martin, Myriam, et al. (författare)
  • Citrullination of C1-inhibitor as a mechanism of impaired complement regulation in rheumatoid arthritis
  • 2023
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDysregulated complement activation, increased protein citrullination, and production of autoantibodies against citrullinated proteins are hallmarks of rheumatoid arthritis (RA). Citrullination is induced by immune cell-derived peptidyl-Arg deiminases (PADs), which are overactivated in the inflamed synovium. We characterized the effect of PAD2- and PAD4-induced citrullination on the ability of the plasma-derived serpin C1-inhibitor (C1-INH) to inhibit complement and contact system activation. MethodsCitrullination of the C1-INH was confirmed by ELISA and Western blotting using a biotinylated phenylglyoxal probe. C1-INH-mediated inhibition of complement activation was analyzed by C1-esterase activity assay. Downstream inhibition of complement was studied by C4b deposition on heat-aggregated IgGs by ELISA, using pooled normal human serum as a complement source. Inhibition of the contact system was investigated by chromogenic activity assays for factor XIIa, plasma kallikrein, and factor XIa. In addition, autoantibody reactivity to native and citrullinated C1-INH was measured by ELISA in 101 RA patient samples. ResultsC1-INH was efficiently citrullinated by PAD2 and PAD4. Citrullinated C1-INH was not able to bind the serine protease C1s and inhibit its activity. Citrullination of the C1-INH abrogated its ability to dissociate the C1-complex and thus inhibit complement activation. Consequently, citrullinated C1-INH had a decreased capacity to inhibit C4b deposition via the classical and lectin pathways. The inhibitory effect of C1-INH on the contact system components factor XIIa, plasma kallikrein, and factor XIa was also strongly reduced by citrullination. In RA patient samples, autoantibody binding to PAD2- and PAD4-citrullinated C1-INH was detected. Significantly more binding was observed in anti-citrullinated protein antibody (ACPA)-positive than in ACPA-negative samples. ConclusionCitrullination of the C1-INH by recombinant human PAD2 and PAD4 enzymes impaired its ability to inhibit the complement and contact systems in vitro. Citrullination seems to render C1-INH more immunogenic, and citrullinated C1-INH might thus be an additional target of the autoantibody response observed in RA patients.
  •  
2.
  •  
3.
  • Vogt, Leonie M., et al. (författare)
  • Apolipoprotein E Triggers Complement Activation in Joint Synovial Fluid of Rheumatoid Arthritis Patients by Binding C1q
  • 2020
  • Ingår i: Journal of Immunology. - : American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 204:10, s. 2779-2790
  • Tidskriftsartikel (refereegranskat)abstract
    • We identified apolipoprotein E (ApoE) as one of the proteins that are found in complex with complement component C4d in pooled synovial fluid of rheumatoid arthritis (RA) patients. Immobilized human ApoE activated both the classical and the alternative complement pathways. In contrast, ApoE in solution demonstrated an isoform-dependent inhibition of hemolysis and complement deposition at the level of sC5b-9. Using electron microscopy imaging, we confirmed that ApoE interacts differently with C1q depending on its context; surface-bound ApoE predominantly bound C1q globular heads, whereas ApoE in a solution favored the hinge/stalk region of C1q. As a model for the lipidated state of ApoE in lipoprotein particles, we incorporated ApoE into phosphatidylcholine/phosphatidylethanolamine liposomes and found that the presence of ApoE on liposomes increased deposition of C1q and C4b from serum when analyzed using flow cytometry. In addition, posttranslational modifications associated with RA, such as citrullination and oxidation, reduced C4b deposition, whereas carbamylation enhanced C4b deposition on immobilized ApoE. Posttranslational modification of ApoE did not alter Clq interaction but affected binding of complement inhibitors factor H and C4b -binding protein. This suggests that changed ability of C4b to deposit on modified ApoE may play an important role. Our data show that posttranslational modifications of ApoE alter its interactions with complement. Moreover, ApoE may play different roles in the body depending on its solubility, and in diseased states such as RA, deposited ApoE may induce local complement activation rather than exert its typical role of inhibition.
  •  
4.
  • Lipcsey, Miklós, et al. (författare)
  • The Outcome of Critically Ill COVID-19 Patients Is Linked to Thromboinflammation Dominated by the Kallikrein/Kinin System
  • 2021
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • An important manifestation of severe COVID-19 is the ARDS-like lung injury that is associated with vascular endothelialitis, thrombosis, and angiogenesis. The intravascular innate immune system (IIIS), including the complement, contact, coagulation, and fibrinolysis systems, which is crucial for recognizing and eliminating microorganisms and debris in the body, is likely to be involved in the pathogenesis of COVID-19 ARDS. Biomarkers for IIIS activation were studied in the first 66 patients with COVID-19 admitted to the ICU in Uppsala University Hospital, both cross-sectionally on day 1 and in 19 patients longitudinally for up to a month, in a prospective study. IIIS analyses were compared with biochemical parameters and clinical outcome and survival. Blood cascade systems activation leading to an overreactive conjunct thromboinflammation was demonstrated, reflected in consumption of individual cascade system components, e.g., FXII, prekallikrein, and high molecular weight kininogen and in increased levels of activation products, e.g., C4d, C3a, C3d,g, sC5b-9, TAT, and D-dimer. Strong associations were found between the blood cascade systems and organ damage, illness severity scores, and survival. We show that critically ill COVID-19 patients display a conjunct activation of the IIIS that is linked to organ damage of the lung, heart, kidneys, and death. We present evidence that the complement and in particular the kallikrein/kinin system is strongly activated and that both systems are prognostic markers of the outcome of the patients suggesting their role in driving the inflammation. Already licensed kallikrein/kinin inhibitors are potential drugs for treatment of critically ill patients with COVID-19.
  •  
5.
  • Laabei, Maisem, et al. (författare)
  • Short leucine-rich proteoglycans modulate complement activity and increase killing of the respiratory pathogen moraxella catarrhalis
  • 2018
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 201:9, s. 2721-2730
  • Tidskriftsartikel (refereegranskat)abstract
    • The respiratory pathogen Moraxella catarrhalis is a human-specific commensal that frequently causes acute otitis media in children and stimulates acute exacerbations in chronic obstructive pulmonary disease patients. The exact molecular mechanisms defining host-pathogen interactions promoting pathogenesis are not clearly understood. Limited knowledge hampers vaccine and immunotherapeutic development required to treat this emerging pathogen. In this study, we reveal in detail a novel antibacterial role displayed by short leucine-rich proteoglycans (SLRPs) in concert with complement. We show that fibromodulin (FMOD), osteoadherin (OSAD), and biglycan (BGN) but not decorin (DCN) enhance serum killing of M. catarrhalis. Our results suggest that M. catarrhalis binding to SLRPs is a conserved feature, as the overwhelming majority of clinical and laboratory strains bound all four SLRPs. Furthermore, we resolve the binding mechanism responsible for this interaction and highlight the role of the ubiquitous surface protein (Usp) A2/A2H in mediating binding to host SLRPs. A conserved immune evasive strategy used by M. catarrhalis and other pathogens is the surface acquisition of host complement inhibitors such as C4b-binding protein (C4BP). We observed that FMOD, OSAD, and BGN competitively inhibit binding of C4BP to the surface of M. catarrhalis, resulting in increased C3b/iC3b deposition, membrane attack complex (MAC) formation, and subsequently decreased bacterial survival. Furthermore, both OSAD and BGN promote enhanced neutrophil killing in vitro, both in a complement-dependent and independent fashion. In summary, our results illustrate that SLRPs, FMOD, OSAD, and BGN portray complement-modulating activity enhancing M. catarrhalis killing, defining a new antibacterial role supplied by SLRPs.
  •  
6.
  • Golec, Ewelina, et al. (författare)
  • The noncoding RNA nc886 regulates PKR signaling and cytokine production in human cells
  • 2019
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 202:1, s. 131-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein kinase RNA-activated (PKR) is a cytoplasmic receptor for dsRNA, and as such is involved in detection of viral infection. On binding dsRNA, PKR dimerizes, autophosphorylates, and then phosphorylates its substrate, eukaryotic translation initiation factor 2 subunit a (eIF2α), causing inhibition of mRNA translation and shutdown of viral protein production. However, active PKR has also been found to be involved in the NF-κB signaling pathway by inducing phosphorylation of IkBa. PKR is regulated by the noncoding RNA nc886, which has altered expression in cancer. We have found that expression of nc886 is highly upregulated during activation of human CD4+ T cells. As has been described in other cell types, nc886 bound to PKR in human T cell lysates, preventing PKR phosphorylation by polyinosinic:polycytidylic acid or HIV trans-activation response element RNA in lysates of T cell lines or primary human CD4+ T cells. Using clonal human T cell lines, we found that nc886 expression was strictly required for IFN-γ and IL-2 expression and secretion after T cell activation but did not affect proliferation or activation-induced cell death. In stimulated human PBMCs, nc886 expression strongly correlated with IFN-γ expression. Although nc886 inhibited PKR activation by dsRNA, it was required for PKR phosphorylation during T cell stimulation, with subsequent NF-κB signaling and CREB phosphorylation. nc886 also regulated PKR phosphorylation during human monocyte-derived macrophage activation. We have therefore identified nc886 as a noncoding RNA marker of T cell activation and regulator of PKR-dependent signaling.
  •  
7.
  • Martin, Myriam, et al. (författare)
  • Complement in removal of the dead – balancing inflammation
  • 2016
  • Ingår i: Immunological Reviews. - : Wiley. - 0105-2896. ; 274:1, s. 218-232
  • Forskningsöversikt (refereegranskat)abstract
    • Recognition and removal of apoptotic and necrotic cells must be efficient and highly controlled to avoid excessive inflammation and autoimmune responses to self. The complement system, a crucial part of innate immunity, plays an important role in this process. Thus, apoptotic and necrotic cells are recognized by complement initiators such as C1q, mannose binding lectin, ficolins, and properdin. This triggers complement activation and opsonization of cells with fragments of C3b, which enhances phagocytosis and thus ensures silent removal. Importantly, the process is tightly controlled by the binding of complement inhibitors C4b-binding protein and factor H, which attenuates late steps of complement activation and inflammation. Furthermore, factor H becomes actively internalized by apoptotic cells, where it catalyzes the cleavage of intracellular C3 to C3b. The intracellularly derived C3b additionally opsonizes the cell surface further supporting safe and fast clearance and thereby aids to prevent autoimmunity. Internalized factor H also binds nucleosomes and directs monocytes into production of anti-inflammatory cytokines upon phagocytosis of such complexes. Disturbances in the complement-mediated clearance of dying cells result in persistence of autoantigens and development of autoimmune diseases like systemic lupus erythematosus, and may also be involved in development of age-related macula degeneration.
  •  
8.
  • Kremlitzka, Mariann, et al. (författare)
  • Interaction of Serum-Derived and Internalized C3 With DNA in Human B Cells-A Potential Involvement in Regulation of Gene Transcription
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Beside its classical role as a serum effector system of innate immunity, evidence is accumulating that complement has an intracellular repertoire of components that provides not only immune defense, but also functions to maintain cellular homeostasis. While complement proteins, mainly the central component C3, have been detected in B cells, their exact function and source remain largely unexplored. In this study, we investigated the expression and origin of intracellular C3 in human B cells together with its role in B cell homeostasis. Our data provide evidence that endogenous expression of C3 is very low in human B cells and, in accordance with the recent publication, the main origin of intracellular C3 is the serum. Interestingly, we found that both serum-derived and purified C3 are able to enter the nucleus of viable B cells, suggesting its potential involvement in regulation of gene transcription. ELISA, gel shift assay, confocal microscopy, and chromatin immunoprecipitation proved that C3 and C3a strongly bind to nuclear DNA, and among the interacting genes there are key factors of lymphocyte development and differentiation. The strong interaction of C3 with histone proteins and its potential ability to induce chromatin rearrangement suggest that C3/C3a might regulate DNA transcription via chromatin remodeling. Our data reveal a novel, hitherto undescribed role of C3 in immune cell homeostasis, which further extends the repertoire how complement links innate and adaptive immunity and regulates basic processes of the cells.
  •  
9.
  • King, Ben C., et al. (författare)
  • Non-traditional roles of complement in type 2 diabetes : Metabolism, insulin secretion and homeostasis
  • 2017
  • Ingår i: Molecular Immunology. - : Elsevier BV. - 0161-5890. ; 84, s. 34-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 Diabetes (T2D) is a disease of increasing importance and represents a growing burden on global healthcare and human health. In T2D, loss of effectiveness of insulin signaling in peripheral tissues cannot be compensated for by adequate insulin secretion, leading to hyperglycemia and resultant complications. In recent years, inflammation has been identified as a central component of T2D, both in inducing peripheral insulin resistance as well as in the pancreatic islet, where it contributes to loss of insulin secretion and death of insulin-secreting beta cells. In this review we will focus on non-traditional roles of complement proteins which have been identified in T2D-associated inflammation, beta cell secretory function, and in maintaining homeostasis of the pancreatic islet. Improved understanding of both traditional and novel roles of complement proteins in T2D may lead to new therapeutic approaches for this global disease.
  •  
10.
  • Nandakumar, Kutty Selva, 1965-, et al. (författare)
  • Streptococcal Endo-β-N-Acetylglucosaminidase Suppresses Antibody-Mediated Inflammation In Vivo
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Endo-β-N-acetylglucosaminidase (EndoS) is a family 18 glycosyl hydrolase secreted by Streptococcus pyogenes. Recombinant EndoS hydrolyzes the β-1,4-di-N-acetylchitobiose core of the N-linked complex type glycan on the asparagine 297 of the γ-chains of IgG. Here, we report that EndoS and IgG hydrolyzed by EndoS induced suppression of local immune complex (IC)-mediated arthritis. A small amount (1 µg given i.v. to a mouse) of EndoS was sufficient to inhibit IgG-mediated arthritis in mice. The presence of EndoS disturbed larger IC lattice formation both in vitro and in vivo, as visualized with anti-C3b staining. Neither complement binding in vitro nor antigen-antibody binding per se were affected. Thus, EndoS could potentially be used for treating patients with IC-mediated pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39
Typ av publikation
tidskriftsartikel (37)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (36)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Riesbeck, Kristian (6)
Potempa, Jan (3)
Nilsson Ekdahl, Kris ... (3)
Nilsson, Bo (3)
Okrój, Marcin (3)
visa fler...
Lambris, John D. (3)
Mörgelin, Matthias (2)
Zubarev, Roman A (2)
Fromell, Karin (2)
Holmdahl, Rikard (2)
Huber-Lang, Markus (2)
Björck, Lars (2)
Österborg, Anders (1)
Connolly, E. Sander (1)
Singh, Birendra (1)
Renström, Erik (1)
Truedsson, Lennart (1)
Linse, Sara (1)
Sandblad, Linda (1)
Talens, Simone (1)
Jenkins, Huw T. (1)
Nandakumar, Kutty Se ... (1)
Storm, Petter (1)
Frithiof, Robert (1)
Lipcsey, Miklós (1)
Hultström, Michael, ... (1)
Dahlbäck, Björn (1)
Pio, Ruben (1)
Müller, Klaus (1)
Collin, Mattias (1)
De Marinis, Yang (1)
Johansson, Martin E. (1)
Lundqvist, Martin (1)
Sjöholm, Anders (1)
Westermark, Gunilla (1)
Malmström, Johan (1)
Ge, Changrong (1)
Kavanagh, David (1)
Zetterberg, Eva (1)
Jonsson, Sandra (1)
Saxne, Tore (1)
Bakker, Bjorn (1)
Rossing, Maria (1)
Gabrielaite, Migle (1)
Liang, Bibo (1)
Lindahl, Gunnar (1)
Westermark, Gunilla ... (1)
Mollnes, Tom E. (1)
Jonsson, Ann-Beth (1)
visa färre...
Lärosäte
Lunds universitet (37)
Uppsala universitet (6)
Karolinska Institutet (4)
Linnéuniversitetet (3)
Umeå universitet (1)
Högskolan i Halmstad (1)
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (39)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy