SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES Chemical Sciences) ;lar1:(gu)"

Sökning: AMNE:(NATURAL SCIENCES Chemical Sciences) > Göteborgs universitet

  • Resultat 1-10 av 3742
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Le Breton, Michael, 1986, et al. (författare)
  • Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl-VOC production
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:17, s. 13013-13030:18, s. 13013-13030
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitryl chloride (ClNO2) accumulation at night acts as a significant reservoir for active chlorine and impacts the following day's photochemistry when the chlorine atom is liberated at sunrise. Here, we report simultaneous measurements of N2O5 and a suite of inorganic halogens including ClNO2 and reactions of chloride with volatile organic compounds (Cl-VOCs) in the gas and particle phases utilising the Filter Inlet for Gas and AEROsols time-of-flight chemical ionisation mass spectrometer (FIGAERO-ToF-CIMS) during an intensive measurement campaign 40 km northwest of Beijing in May and June 2016. A maximum mixing ratio of 2900 ppt of ClNO2 was observed with a mean campaign nighttime mixing ratio of 487 ppt, appearing to have an anthropogenic source supported by correlation with SO2, CO and benzene, which often persisted at high levels after sunrise until midday. This was attributed to such high mixing ratios persisting after numerous e-folding times of the photolytic lifetime enabling the chlorine atom production to reach 2.3 x 10(5) molecules cm(-3) from ClNO2 alone, peaking at 09:30 LT and up to 8.4 x 10(5) molecules cm(-3) when including the supporting inorganic halogen measurements. Cl-VOCs were observed in the particle and gas phases for the first time at high time resolution and illustrate how the iodide ToF-CIMS can detect unique markers of chlorine atom chemistry in ambient air from both biogenic and anthropogenic sources. Their presence and abundance can be explained via time series of their measured and steady-state calculated precursors, enabling the assessment of competing OH and chlorine atom oxidation via measurements of products from both of these mechanisms and their relative contribution to secondary organic aerosol (SOA) formation.
  •  
2.
  • Li, J. J., et al. (författare)
  • Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer
  • 2019
  • Ingår i: Journal of Geophysical Research-Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 124:10, s. 5629-5649
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol mass spectrometry was used to characterize submicron aerosols before and after aging in a Gothenburg Potential Aerosol Mass (Go:PAM) reactor at two suburban sites in China, one in northern China at Changping (CP), Beijing, and a second in southern China at Hong Kong (HK). Organic aerosol (OA) dominated in the ambient nonrefractory particulate matter <1m (NR-PM1) for both CP (42-71%) and HK (43-61%), with a large contribution from secondary OA factors that were semivolatile oxygenated (SVOOA) and low-volatility oxygenated (LVOOA). Under constant OH exposure, OA enhancement (78-98%) dominated the NR-PM1 mass increment at both sites, while nitrate was enhanced the most among the inorganic species (7-9%). Overall, the CP site exhibited higher OA oxidation potential and more enhancement of SVOOA than LVOOA (7.5 vs. 2.7g/m(3)), but the reverse was observed in HK (0.8 vs. 2.6g/m(3)). In CP, more enhancement of the less oxygenated SVOOA suggests that aerosol aging was more sensitive to the abundant locally emitted primary OA and volatile organic compound precursors. On the contrary, the more formation of the highly oxidized LVOOA in HK indicates that aerosol aging mainly escalated the degree of oxygenation of OA as ambient aerosol was already quite aged and there was a lack of volatile organic compound precursors. The comparative measurements using the same oxidation system reveal distinct key factors and mechanisms that influence secondary aerosol formation in two suburban locations in China, providing scientific insights to assist formulation of location-specific mitigation measures of secondary pollution. Plain Language Summary Atmospheric submicron particles have significant impacts on the climate and human health. A large part of these particles are formed secondarily through successive aging of primary emissions. To study such aging processes, we used a reactor that can provide highly oxidizing conditions to simulate the oxidation of ambient aerosols at accelerated rates. An online mass spectrometer was connected after the reactor to measure changes in aerosol mass concentration and chemical composition between the ambient samples and the oxidized ones. We presented the first comparative measurements of the aging potentials of ambient aerosols in two suburban sites in northern and southern China (Changping District in Beijing, and Hong Kong). Results showed that generally aerosols at the Changping site had higher aging potentials after passing through the oxidation reactor, probably due to more local emissions of precursors, while air masses in Hong Kong were already in a higher oxidation state with lower aging potentials, mainly because of strong impacts from long-range transported pollution sources. Distinct aerosol aging pathways related to different ambient precursors were observed at the two sites. Understanding of the different characteristics of aerosol aging processes can lead to advances in air quality modeling and pollution management.
  •  
3.
  • Guo, Y. D., et al. (författare)
  • Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:17, s. 11323-11346
  • Tidskriftsartikel (refereegranskat)abstract
    • Nighttime NO3-initiated oxidation of biogenic volatile organic compounds (BVOCs) such as monoterpenes is important for the atmospheric formation and growth of secondary organic aerosol (SOA), which has significant impact on climate, air quality, and human health. In such SOA formation and growth, highly oxygenated organic molecules (HOM) may be crucial, but their formation pathways and role in aerosol formation have yet to be clarified. Among monoterpenes, limonene is of particular interest for its high emission globally and high SOA yield. In this work, HOM formation in the reaction of limonene with nitrate radical (NO3) was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). About 280 HOM products were identified, grouped into 19 monomer families, 11 dimer families, and 3 trimer families. Both closed-shell products and open-shell peroxy radicals (RO2 center dot) 2 were observed, and many of them have not been reported previously. Monomers and dimers accounted for 47% and 47% of HOM concentrations, respectively, with trimers making up the remaining 6 %. In the most abundant monomer families, C10H15-17NO6-14, carbonyl products outnumbered hydroxyl products, indicating the importance of RO2 center dot termination by unimolecular dissociation. Both RO2 center dot autoxidation and alkoxy-peroxy pathways were found to be important processes leading to HOM. Time-dependent concentration profiles of monomer products containing nitrogen showed mainly second-generation formation patterns. Dimers were likely formed via the accretion reaction of two monomer RO2 center dot , and HOM-trimers via the accretion reaction between monomer RO2 center dot and dimer RO2 center dot. Trimers are suggested to play an important role in new particle formation (NPF) observed in our experiment. A HOM yield of 1.5%(+1.7%)(-0.7%) was estimated considering only first-generation products. SOA mass growth could be reasonably explained by HOM condensation on particles assuming irreversible uptake of ultra-low volatility organic compounds (ULVOCs), extremely low volatility organic compounds (ELVOCs), and low volatility organic compounds (LVOCs). This work provides evidence for the important role of HOM formed via the limonene +NO3 reaction in NPF and growth of SOA particles.
  •  
4.
  • Le Breton, Michael, 1986, et al. (författare)
  • Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:14, s. 10355-10371
  • Tidskriftsartikel (refereegranskat)abstract
    • A time-of-flight chemical ionization mass spectrometer (CIMS) utilizing the Filter Inlet for Gas and Aerosol (FIGAERO) was deployed at a regional site 40 km north-west of Beijing and successfully identified and measured 17 sulfur-containing organics (SCOs are organo/nitrooxy organosulfates and sulfonates) with biogenic and anthropogenic precursors. The SCOs were quantified using laboratory-synthesized standards of lactic acid sulfate and nitrophenol organosulfate (NP OS). The variation in field observations was confirmed by comparison to offline measurement techniques (orbitrap and high-performance liquid chromatography, HPLC) using daily averages. The mean total (of the 17 identified by CIMS) SCO particle mass concentration was 210 +/- 110 ng m(-3) and had a maximum of 540 ng m(-3), although it contributed to only 2 +/- 1% of the organic aerosol (OA). The CIMS identified a persistent gas-phase presence of SCOs in the ambient air, which was further supported by separate vapour-pressure measurements of NP OS by a Knudsen Effusion Mass Spectrometer (KEMS). An increase in relative humidity (RH) promoted partitioning of SCO to the particle phase, whereas higher temperatures favoured higher gas-phase concentrations. Biogenic emissions contributed to only 19% of total SCOs measured in this study. Here, C10H16NSO7, a monoterpene-derived SCO, represented the highest fraction (10 %) followed by an isoprene-derived SCO. The anthropogenic SCOs with polycyclic aromatic hydrocarbon (PAH) and aromatic precursors dominated the SCO mass loading (51 %) with C11H11SO7, derived from methyl naphthalene oxidation, contributing to 40 ng m(-3) and 0.3% of the OA mass. Anthropogenic-related SCOs correlated well with benzene, although their abundance depended highly on the photochemical age of the air mass, tracked using the ratio between pinonic acid and its oxidation product, acting as a qualitative photochemical clock. In addition to typical anthropogenic and biogenic precursors the biomass-burning precursor nitrophenol (NP) provided a significant level of NP OS. It must be noted that the contribution analysis here is only representative of the detected SCOs. There are likely to be many more SCOs present which the CIMS has not identified. Gas- and particle-phase measurements of glycolic acid suggest that partitioning towards the particle phase promotes glycolic acid sulfate production, contrary to the current formation mechanism suggested in the literature. Furthermore, the HSO4 center dot H2SO4- cluster measured by the CIMS was utilized as a qualitative marker for acidity and indicates that the production of total SCOs is efficient in highly acidic aerosols with high SO42- and organic content. This dependency becomes more complex when observing individual SCOs due to variability of specific VOC precursors.
  •  
5.
  • Mohr, Claudia, et al. (författare)
  • Molecular identification of organic vapors driving atmospheric nanoparticle growth
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles formed in the atmosphere via nucleation provide about half the number of atmospheric cloud condensation nuclei, but in many locations, this process is limited by the growth of the newly formed particles. That growth is often via condensation of organic vapors. Identification of these vapors and their sources is thus fundamental for simulating changes to aerosol-cloud interactions, which are one of the most uncertain aspects of anthropogenic climate forcing. Here we present direct molecular-level observations of a distribution of organic vapors in a forested environment that can explain simultaneously observed atmospheric nanoparticle growth from 3 to 50nm. Furthermore, the volatility distribution of these vapors is sufficient to explain nanoparticle growth without invoking particle-phase processes. The agreement between observed mass growth, and the growth predicted from the observed mass of condensing vapors in a forested environment thus represents an important step forward in the characterization of atmospheric particle growth.
  •  
6.
  •  
7.
  • Wang, Y. J., et al. (författare)
  • The formation of nitro-aromatic compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:11, s. 7649-7665
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitro-aromatic compounds (NACs), as important contributors to the light absorption by brown carbon, have been widely observed in various ambient atmospheres; however, their formation in the urban atmosphere was little studied. In this work, we report an intensive field study of NACs in summer 2016 at an urban Beijing site, characterized by both high-NO(x)and anthropogenic VOC dominated conditions. We investigated the factors that influence NAC formation (e.g., NO2, VOC precursors, RH and photolysis) through quantification of eight NACs, along with major components in fine particulate matter, selected volatile organic compounds, and gases. The average total concentration of the quantified NACs was 6.63 ng m(-3), higher than those reported in other summertime studies (0.14-6.44 ng m(-3)). 4-Nitrophenol (4NP, 32.4 %) and 4-nitrocatechol (4NC, 28.5 %) were the top two most abundant NACs, followed by methyl-nitrocatechol (MNC), methyl-nitrophenol (MNP), and dimethyl-nitrophenol (DMNP). The oxidation of toluene and benzene in the presence of NOx was found to be a more dominant source of NACs than primary biomass burning emissions. The NO2 concentration level was found to be an important factor influencing the secondary formation of NACs. A transition from low- to high-NOx regimes coincided with a shift from organic- to inorganic-dominated oxidation products. The transition thresholds were NO2 similar to 20 ppb for daytime and NO2 similar to 25 ppb for nighttime conditions. Under low-NOx conditions, NACs increased with NO2, while the NO3 concentrations and (NO3-)/NACs ratios were lower, implying organic-dominated products. Under high-NOx conditions, NAC concentrations did not further increase with NO2, while the NO3- concentrations and (NO3-)/NACs ratios showed increasing trends, signaling a shift from organic- to inorganic-dominated products. Nighttime enhancements were observed for 3M4NC and 4M5NC, while daytime enhancements were noted for 4NP, 2M4NP, and DMNP, indicating different formation pathways for these two groups of NACs. Our analysis suggested that the aqueous-phase oxidation was likely the major formation pathway of 4M5NC and 3M5NC, while photo-oxidation of toluene and benzene in the presence of NO2 could be more important for the formation of nitrophenol and its derivatives. Using the (3M4NC+4M5NC) / 4NP ratios as an indicator of the relative contribution of aqueous-phase and gas-phase oxidation pathways to NAC formation, we observed that the relative contribution of aqueous-phase pathways increased at elevated ambient RH and remained constant at RH > 30 %. We also found that the concentrations of VOC precursors (e.g., toluene and benzene) and aerosol surface area acted as important factors in promoting NAC formation, and photolysis as an important loss pathway for nitrophenols.
  •  
8.
  • Salvador, Christian Mark, 1989, et al. (författare)
  • Indoor ozone/human chemistry and ventilation strategies
  • 2019
  • Ingår i: Indoor Air. - : Hindawi Limited. - 1600-0668 .- 0905-6947. ; 29:6, s. 913-925
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to better understand and quantify the influence of ventilation strategies on occupant-related indoor air chemistry. The oxidation of human skin oil constituents was studied in a continuously ventilated climate chamber at two air exchange rates (1 h-1 and 3 h-1 ) and two initial ozone mixing ratios (30 and 60 ppb). Additional measurements were performed to investigate the effect of intermittent ventilation ("off" followed by "on"). Soiled t-shirts were used to simulate the presence of occupants. A time-of-flight-chemical ionization mass spectrometer (ToF-CIMS) in positive mode using protonated water clusters was used to measure the oxygenated reaction products geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA). The measurement data were used in a series of mass balance models accounting for formation and removal processes. Reactions of ozone with squalene occurring on the surface of the t-shirts are mass transport limited; ventilation rate has only a small effect on this surface chemistry. Ozone-squalene reactions on the t-shirts produced gas-phase geranyl acetone, which was subsequently removed almost equally by ventilation and further reaction with ozone. About 70% of gas-phase 6-MHO was produced in surface reactions on the t-shirts, the remainder in secondary gas-phase reactions of ozone with geranyl acetone. 6-MHO was primarily removed by ventilation, while further reaction with ozone was responsible for about a third of its removal. 4-OPA was formed primarily on the surfaces of the shirts (~60%); gas-phase reactions of ozone with geranyl acetone and 6-MHO accounted for ~30% and ~10%, respectively. 4-OPA was removed entirely by ventilation. The results from the intermittent ventilation scenarios showed delayed formation of the reaction products and lower product concentrations compared to continuous ventilation.
  •  
9.
  • Voliotis, A., et al. (författare)
  • Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:21, s. 14147-14175
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive chamber investigation of photochemical secondary organic aerosol (SOA) formation and transformation in mixtures of anthropogenic (o-cresol) and biogenic (alpha-pinene and isoprene) volatile organic compound (VOC) precursors in the presence of NOx and inorganic seed particles was conducted. To enable direct comparison across systems, the initial concentration (hence reactivity) of the systems towards the dominant OH oxidant was adjusted. Comparing experiments conducted in single-precursor systems at various initial reactivity levels (referenced to a nominal base case VOC concentration, e.g. halving the initial concentration for a 1/2 initial reactivity experiment) as well as their binary and ternary mixtures, we show that the molecular interactions from the mixing of the precursors can be investigated and discuss challenges in their interpretation. The observed average SOA particle mass yields (the organic particle mass produced for a mass of VOC consumed) in descending order were found for the following systems: alpha-pinene (32 +/- 7 %), alpha-pinene-o-cresol (28 +/- 9 %), alpha-pinene at 1/2 initial reactivity (21 +/- 5 %), alpha-pinene-isoprene (16 +/- 1 %), alpha-pinene at 1/3 initial reactivity (15 +/- 4 %), o-cresol (13 +/- 3 %), alpha-pinene-o-cresol-isoprene (11 +/- 4 %), o-cresol at 1/2 initial reactivity (11 +/- 3 %), o-cresol-isoprene (6 +/- 2 %), and isoprene (0 +/- 0 %). We find a clear suppression of the SOA mass yield from alpha-pinene when it is mixed with isoprene, whilst no suppression or enhancement of SOA particle yield from o-cresol was found when it was similarly mixed with isoprene. The alpha-pinene-o-cresol system yield appeared to be increased compared to that calculated based on the additivity, whilst in the alpha-pinene-o-cresol-isoprene system the measured and predicted yields were comparable. However, in mixtures in which more than one precursor contributes to the SOA particle mass it is unclear whether changes in the SOA formation potential are attributable to physical or chemical interactions, since the reference basis for the comparison is complex. Online and offline chemical composition as well as SOA particle volatility, water uptake, and "phase" behaviour measurements that were used to interpret the SOA formation and behaviour are introduced and detailed elsewhere.
  •  
10.
  • Wu, R. R., et al. (författare)
  • Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:13, s. 10799-10824
  • Tidskriftsartikel (refereegranskat)abstract
    • Isoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Julich) under near-atmospheric conditions. Various oxidation products were measured by a high-resolution time-offlight chemical ionization mass spectrometer using Br as the reagent ion. Most of the products detected are organic nitrates, and they are grouped into monomers (C-4 and C-5 products) and dimers (C-10 products) with 1-3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantage of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate-volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80% of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5% from the wall-loss- and dilution-corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 3742
Typ av publikation
tidskriftsartikel (3027)
konferensbidrag (244)
doktorsavhandling (230)
bokkapitel (76)
forskningsöversikt (58)
rapport (50)
visa fler...
licentiatavhandling (23)
bok (16)
annan publikation (12)
samlingsverk (redaktörskap) (6)
visa färre...
Typ av innehåll
refereegranskat (3166)
övrigt vetenskapligt/konstnärligt (576)
Författare/redaktör
Ewing, Andrew G, 195 ... (128)
Ahlberg, Elisabet, 1 ... (104)
Hallquist, Mattias, ... (99)
Backhaus, Thomas, 19 ... (96)
Erdelyi, Mate, 1975 (95)
Nyman, Gunnar, 1957 (93)
visa fler...
Pettersson, Jan B. C ... (91)
Norrby, Per-Ola, 196 ... (70)
Hassellöv, Martin, 1 ... (64)
Håkansson, Mikael, 1 ... (63)
Eriksson, Leif A, 19 ... (55)
Dave, Göran, 1945 (52)
Holmlid, Leif, 1942 (52)
Gräfenstein, Jürgen, ... (51)
Grøtli, Morten, 1966 (51)
Anderson, Leif G, 19 ... (51)
Boman, Johan, 1955 (50)
Börjesson, Karl, 198 ... (50)
Karlberg, Ann-Theres ... (50)
Luthman, Kristina, 1 ... (48)
Lennartson, Anders, ... (48)
Larsson, D. G. Joaki ... (45)
Abbas, Zareen, 1962 (44)
Fletcher, John S. (44)
Westenhoff, Sebastia ... (42)
Bergenholtz, Johan, ... (41)
Andersson, Patrik U, ... (41)
Neutze, Richard, 196 ... (41)
Pavia, Henrik, 1964 (40)
Chierici, Melissa, 1 ... (39)
Hulth, Stefan, 1965 (39)
Kong, Xiangrui (39)
Hilmersson, Göran, 1 ... (39)
Fransson, Agneta, 19 ... (36)
Cremer, Dieter, 1944 (36)
Nordholm, Sture, 194 ... (35)
Förlin, Lars, 1950 (34)
Malmberg, Per, 1974 (33)
Strömberg, Dan, 1959 (32)
Kjellander, Roland, ... (32)
Hansen, Klavs, 1958 (31)
Hall, Per, 1954 (30)
Turner, David R., 19 ... (29)
Feifel, Raimund (29)
Olsson, Anders, 1970 (29)
Ericson, Marica B, 1 ... (29)
Ewing, Andrew, 1957 (29)
Knee, Christopher, 1 ... (28)
Albinsson, Ingvar, 1 ... (27)
Börje, Anna, 1961 (27)
visa färre...
Lärosäte
Chalmers tekniska högskola (1016)
Uppsala universitet (256)
Lunds universitet (155)
Stockholms universitet (121)
Kungliga Tekniska Högskolan (95)
visa fler...
RISE (86)
Umeå universitet (58)
Luleå tekniska universitet (47)
Linköpings universitet (45)
Karolinska Institutet (45)
Örebro universitet (23)
Sveriges Lantbruksuniversitet (21)
Linnéuniversitetet (16)
Malmö universitet (14)
Högskolan i Borås (14)
IVL Svenska Miljöinstitutet (13)
Karlstads universitet (10)
Mittuniversitetet (7)
Högskolan Dalarna (6)
Högskolan Väst (4)
Högskolan i Halmstad (3)
Jönköping University (3)
VTI - Statens väg- och transportforskningsinstitut (3)
Högskolan Kristianstad (2)
Högskolan i Gävle (2)
Mälardalens universitet (2)
Högskolan i Skövde (2)
Naturvårdsverket (1)
Gymnastik- och idrottshögskolan (1)
Naturhistoriska riksmuseet (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (3662)
Svenska (74)
Tyska (2)
Franska (1)
Danska (1)
Odefinierat språk (1)
visa fler...
Kinesiska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3741)
Medicin och hälsovetenskap (469)
Teknik (416)
Humaniora (84)
Lantbruksvetenskap (55)
Samhällsvetenskap (43)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy