SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES Chemical Sciences) ;pers:(Tai Cheuk Wai)"

Sökning: AMNE:(NATURAL SCIENCES Chemical Sciences) > Tai Cheuk Wai

  • Resultat 1-10 av 147
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Asfaw, Habtom Desta, Dr. 1986-, et al. (författare)
  • Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries : insight into local structure and interfacial kinetics
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of ~1.3 μm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 oC showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1–1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d002) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 oC performed best with an iCE of 85–89% and a reversible capacity of 300–340 mAh g−1 at 10 mA g−1, with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were ~3.7 Å and ~1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodium-ion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g−1 leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g−1 maintained for more than 50 cycles with a nominal voltage of 3 V.
  •  
3.
  • Kotronia, Antonia, et al. (författare)
  • Nature of the Cathode–Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:3, s. 3867-3880
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual-ion batteries (DIBs) generally operate beyond 4.7 V vs Li+/Li0 and rely on the intercalation of both cations and anions in graphite electrodes. Major challenges facing the development of DIBs are linked to electrolyte decomposition at the cathode–electrolyte interface (CEI), graphite exfoliation, and corrosion of Al current collectors. In this work, X-ray photoelectron spectroscopy (XPS) is employed to gain a broad understanding of the nature and dynamics of the CEI built on anion-intercalated graphite cycled both in highly concentrated electrolytes (HCEs) of common lithium salts (LiPF6, LiFSI, and LiTFSI) in carbonate solvents and in a typical ionic liquid. Though Al metal current collectors were adequately stable in all HCEs, the Coulombic efficiency was substantially higher for HCEs based on LiFSI and LiTFSI salts. Specific capacities ranging from 80 to 100 mAh g–1 were achieved with a Coulombic efficiency above 90% over extended cycling, but cells with LiPF6-based electrolytes were characterized by <70% Coulombic efficiency and specific capacities of merely ca. 60 mAh g–1. The poor performance in LiPF6-containing electrolytes is indicative of the continual buildup of decomposition products at the interface due to oxidation, forming a thick interfacial layer rich in LixPFy, POxFy, LixPOyFz, and organic carbonates as evidenced by XPS. In contrast, insights from XPS analyses suggested that anion intercalation and deintercalation processes in the range from 3 to 5.1 V give rise to scant or extremely thin surface layers on graphite electrodes cycled in LiFSI- and LiTFSI-containing HCEs, even allowing for probing anions intercalated in the near-surface bulk. In addition, ex situ Raman, SEM and TEM characterizations revealed the presence of a thick coating on graphite particles cycled in LiPF6-based electrolytes regardless of salt concentration, while hardly any surface film was observed in the case of concentrated LiFSI and LiTFSI electrolytes.
  •  
4.
  • Guo, Yaxiao, et al. (författare)
  • Molybdenum and boron synergistically boosting efficient electrochemical nitrogen fixation
  • 2020
  • Ingår i: Nano Energy. - : Elsevier Ltd. - 2211-2855 .- 2211-3282. ; 78
  • Tidskriftsartikel (refereegranskat)abstract
    • Ammonia production consumes ~2% of the annual worldwide energy supply, therefore strategic alternatives for the energy-intensive ammonia synthesis through the Haber-Bosch process are of great importance to reduce our carbon footprint. Inspired by MoFe-nitrogenase and the energy-efficient and industrially feasible electrocatalytic synthesis of ammonia, we herein establish a catalytic electrode for artificial nitrogen fixation, featuring a carbon fiber cloth fully grafted by boron-doped molybdenum disulfide (B-MoS2/CFC) nanosheets. An excellent ammonia production rate of 44.09 μg h–1 cm–2 is obtained at −0.2 V versus the reversible hydrogen electrode (RHE), whilst maintaining one of the best reported Faradaic efficiency (FE) of 21.72% in acidic aqueous electrolyte (0.1 M HCl). Further applying a more negative potential of −0.25 V renders the best ammonia production rate of 50.51 μg h–1 cm–2. A strong-weak electron polarization (SWEP) pair from the different electron accepting and back-donating capacities of boron and molybdenum (2p shell for boron and 5d shell for molybdenum) is proposed to facilitate greatly the adsorption of non-polar dinitrogen gas via N≡N bond polarization and the first protonation with large driving force. In addition, for the first time a visible light driven photo-electrochemical (PEC) cell for overall production of ammonia, hydrogen and oxygen from water + nitrogen, is demonstrated by coupling a bismuth vanadate BiVO4 photo-anode with the B-MoS2/CFC catalytic cathode.
  •  
5.
  •  
6.
  • Asfaw, Habtom Desta, 1986-, et al. (författare)
  • Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries : a study of structure and electrochemical performance
  • 2014
  • Ingår i: Nanoscale. - Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 6:15, s. 8804-8813
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol–gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm−2 at 0.1 mA cm−2 (lowest rate) and 1.1 mA h cm−2 at 6 mA cm−2(highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.
  •  
7.
  • Asfaw, Habtom D., Dr. 1986-, et al. (författare)
  • Bio-derived hard carbon nanosheets with high rate sodium-ion storage characteristics
  • 2022
  • Ingår i: Sustainable Materials and Technologies. - : Elsevier. - 2214-9937. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass is a sustainable precursor of hard carbons destined for use in sodium-ion batteries. This study explores the synthesis of hard carbon nanosheets (HCNS) from oxidized cork and impact of synthesis temperature on the hard carbon characteristics. An increase in the carbonization temperature from 1000 to 1500 °C generally leads to lower BET specific surface areas (~55 to 20 m2 g−1) and d002 interlayer spacing (~ 4.0 to 3.7 Å). The effect of synthesis temperature is reflected in the initial coulombic efficiency (iCE) which increases from 72% at 1000 °C to 88% at 1500 °C, as a result of the decrease in surface area, and structural defects in the hard carbon as verified using Raman scattering. The impact of cycling temperature (~25, 30 and 55 °C) on the rate capability and long-term cycling is investigated using high precision coulometry cycler. For a galvanostatic test at 20 mA g−1 and ~ 25 °C, a reversible capacity of 276 mAh g−1 is observed with an iCE of ~88%. Increasing cycling temperature enhances the rate performance, but slightly lowers the iCE (~86% at 30 °C and ~ 81% at 55 °C). At 20 mA g−1, the reversible capacities obtained at 30 °C and 55 °C are on average ~ 260 and ~ 270 mAh g−1, respectively. For constant-current constant-voltage (CCCV) tests conducted at 30 °C, reversible capacities ranging from 252 to 268, 247–252, and 237–242 mAh g−1 can be obtained at 10, 100, and 1000 mA g−1, respectively. The respective capacities obtained at 55 °C are about 272–290, 260–279, and 234–265 mAh g−1 at 10, 100 and 1000 mA g−1. The applicability of the HCNS electrodes is eventually evaluated in full-cells with Prussian white cathodes, for which a discharge capacity of 152 mAh g−1 is obtained with an iCE of ~90%.
  •  
8.
  • Berastegui, Pedro, et al. (författare)
  • Electrochemical reactions of AgFeO2 as negative electrode in Li- and Na-ion batteries
  • 2018
  • Ingår i: Journal of Power Sources. - : Elsevier. - 0378-7753 .- 1873-2755. ; 401, s. 386-396
  • Tidskriftsartikel (refereegranskat)abstract
    • AgFeO2 nanoparticles synthesized via precipitation at room temperature are investigated in Li- and Na-ion cells through electrode coatings with an alginate binder. The electrochemical reactions of AgFeO2 with Li+ and Na+ions, as well as its role as alternative negative electrode in these cell systems are carefully evaluated. Initial Li uptake causes irreversible amorphization of the AgFeO2 structure with concomitant formation of Ag0 nanoparticles. Further Li incorporation results in conversion into Fe0 nanoparticles and Li2O, together with Li-alloying of these Ag0 clusters. Similar mechanisms are also found upon Na uptake, although such processes are hindered by overpotentials, the capacity and reversibility of the reactions with Na+ ions being not comparablewith those of their Li+ counterparts. The behaviour of AgFeO2 at low potentials vs. Li+/Li displays a synergic pseudo-capacitive charge storage overlapping Li-Ag alloying/de-alloying. This feature is exploited in full cells having deeply lithiated AgFeO2 and LiFePO4 as negative and positive electrodes, respectively. These environmentally friendly iron-based full cells exhibit attractive cycle performances with ≈80% capacity retention after 1000 cycles without any electrolyte additive, average round trip efficiency of ≈89% and operational voltage of 3.0 V combined with built-in pseudo-capacitive characteristics that enable high cycling rates up to≈25C.
  •  
9.
  • Chamoun, Mylad, et al. (författare)
  • Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions
  • 2018
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8289 .- 2405-8297. ; 15, s. 351-360
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zn/MnO2 battery is safe, low cost and comes with a high energy density comparable to Li-ion batteries. However, irreversible spinel phases formed at the MnO2 electrode limits its cyclability. A viable solution to overcome this inactive phase is to use an aqueous ZnSO4-based electrolyte, where pH is mildly acidic leading to a different reaction mechanism. Most importantly, the addition of MnSO4 achieves excellent cyclability. How accessible Mn2+ ions in the electrolyte enhances the reversibility is presented. With added Mn2+, the capacity retention is significantly improved over 100 cycles. Zn2+ insertion plays an important role on the reversibility and a hydrated layered Zn-buserite structure formed during charge is reported. Furthermore, Zn4SO4(OH)(6) center dot 5H(2)O precipitates during discharge but is not involved in the electrochemical reaction. This precipitate both buffers the pH and partly insulates the surface. Described in operando study show how the phase transformations and the failure mechanisms depend on the presence of Mn2+-ions in the electrolyte. These results give insight necessary to improve this battery further to make it a worthy contender to the Li-ion battery in large scale energy storage solutions.
  •  
10.
  • Nedumkandathil, Reji, et al. (författare)
  • Hydride Reduction of BaTiO3 ? Oxyhydride Versus O Vacancy Formation
  • 2018
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 3:9, s. 11426-11438
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the hydride reduction of tetragonal BaTiO3 using the metal hydrides CaH2, NaH, MgH2, NaBH4, and NaAlH4. The reactions employed molar BaTiO3/H ratios of up to 1.8 and temperatures near 600 °C. The air-stable reduced products were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy, thermogravimetric analysis (TGA), and 1H magic angle spinning (MAS) NMR spectroscopy. PXRD showed the formation of cubic products - indicative of the formation of BaTiO3-xHx - except for NaH. Lattice parameters were in a range between 4.005 Å (for NaBH4-reduced samples) and 4.033 Å (for MgH2-reduced samples). With increasing H/BaTiO3 ratio, CaH2-, NaAlH4-, and MgH2-reduced samples were afforded as two-phase mixtures. TGA in air flow showed significant weight increases of up to 3.5% for reduced BaTiO3, suggesting that metal hydride reduction yielded oxyhydrides BaTiO3-xHx with x values larger than 0.5. 1H MAS NMR spectroscopy, however, revealed rather low concentrations of H and thus a simultaneous presence of O vacancies in reduced BaTiO3. It has to be concluded that hydride reduction of BaTiO3 yields complex disordered materials BaTiO3-xHy?(x-y) with x up to 0.6 and y in a range 0.04-0.25, rather than homogeneous solid solutions BaTiO3-xHx. Resonances of (hydridic) H substituting O in the cubic perovskite structure appear in the ?2 to ?60 ppm spectral region. The large range of negative chemical shifts and breadth of the signals signifies metallic conductivity and structural disorder in BaTiO3-xHy?(x-y). Sintering of BaTiO3-xHy?(x-y) in a gaseous H2 atmosphere resulted in more ordered materials, as indicated by considerably sharper 1H resonances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 147
Typ av publikation
tidskriftsartikel (121)
konferensbidrag (13)
annan publikation (12)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (121)
övrigt vetenskapligt/konstnärligt (25)
populärvet., debatt m.m. (1)
Författare/redaktör
Tai, Cheuk-Wai, 1973 ... (20)
Bäckvall, Jan-E. (17)
Valvo, Mario (16)
Edström, Kristina (15)
Neagu, Alexandra (12)
visa fler...
Cordova, Armando, 19 ... (11)
Nyholm, Leif (10)
Johnston, Eric V. (9)
Younesi, Reza (9)
Abbaszad Rafi, Abdol ... (7)
Nitze, Florian (7)
Wågberg, Thomas (7)
Edström, Kristina, P ... (7)
Barzegar, Hamid Reza (6)
Hu, Guangzhi (6)
Persson, Ingmar (5)
Hedin, Niklas (5)
Deiana, Luca (5)
Sillanpaa, Mika (5)
Bäckvall, Jan-Erling (5)
Asfaw, Habtom Desta, ... (5)
Kotronia, Antonia (5)
Svensson, Gunnar (5)
Sharifi, Tiva (5)
Alimohammadzadeh, Ra ... (4)
Zou, Xiaodong (4)
Bergström, Lennart (4)
Strømme, Maria, 1970 ... (4)
Afewerki, Samson, 19 ... (4)
Gustafsson, Torbjörn (4)
Hahlin, Maria (4)
Edström, Kristina, 1 ... (4)
Sillanpää, Mika (4)
Ma, Yue (4)
Åkermark, Björn (3)
Martín-Matute, Belén (3)
Bacsik, Zoltan (3)
Afewerki, Samson (3)
Salazar-Alvarez, Ger ... (3)
Zhu, Jiefang (3)
Björefors, Fredrik (3)
Shchukarev, Andrey (3)
Cheung, Ocean (3)
Brandell, Daniel, 19 ... (3)
Sahlberg, Martin (3)
Roberts, Matthew R. (3)
Malolepszy, Artur (3)
Stobinski, Leszek (3)
Qi, Kezhen (3)
visa färre...
Lärosäte
Stockholms universitet (134)
Uppsala universitet (50)
Mittuniversitetet (15)
Umeå universitet (10)
Sveriges Lantbruksuniversitet (6)
Kungliga Tekniska Högskolan (5)
visa fler...
Chalmers tekniska högskola (4)
Karolinska Institutet (2)
Luleå tekniska universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (147)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (147)
Teknik (37)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy