SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "AMNE:(NATURAL SCIENCES Physical Sciences) ;mspu:(chapter);lar1:(uu)"

Search: AMNE:(NATURAL SCIENCES Physical Sciences) > Book chapter > Uppsala University

  • Result 1-10 of 122
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Airey, John, 1963-, et al. (author)
  • Developing Students’ Disciplinary Literacy? : The Case of University Physics
  • 2018
  • In: Global Developments in Literacy Research for Science Education. - Cham, Switzerland : Springer. - 9783319691978 - 9783319691961 ; , s. 357-376
  • Book chapter (peer-reviewed)abstract
    • In this chapter we use the concept of disciplinary literacy (Airey, 2011a, 2013) to analyze the goals of university physics lecturers. Disciplinary literacy refers to a particular mix of disciplinary-specific communicative practices developed for three specific sites: the academy, the workplace and society. It has been suggested that the development of disciplinary literacy may be seen as one of the primary goals of university studies (Airey, 2011a).The main data set used in this chapter comes from a comparative study of physics lecturers in Sweden and South Africa (Airey, 2012, 2013; Linder, Airey, Mayaba, & Webb, 2014). Semi-structured interviews were carried out using a disciplinary literacy discussion matrix (Airey, 2011b), which enabled us to probe the lecturers’ disciplinary literacy goals in the various semiotic resource systems used in undergraduate physics (i.e. graphs, diagrams, mathematics, language).The findings suggest that whilst physics lecturers have strikingly similar disciplinary literacy goals for their students, regardless of setting, they have very different ideas about whether they themselves should teach students to handle these disciplinary-specific semiotic resources. It is suggested that the similarity in physics lecturers’ disciplinary literacy goals across highly disparate settings may be related to the hierarchical, singular nature of the discipline of physics (Bernstein, 1999, 2000).In the final section of the chapter some preliminary evidence about the disciplinary literacy goals of those involved in physics teacher training is presented. Using Bernstein’s constructs, a potential conflict between the hierarchical singular of physics and the horizontal region of teacher training is noticeable.Going forward it would be interesting to apply the concept of disciplinary literacy to the analysis of other disciplines—particularly those with different combinations of Bernstein’s classifications of hierarchical/horizontal and singular/region.
  •  
2.
  •  
3.
  • Runkel, Ingo, et al. (author)
  • Topological and conformal field theory as Frobenius algebras
  • 2007
  • In: Categories in Algebra, Geometry and Mathematical Physics. - : American Mathematical Society (AMS). - 9780821839706 ; , s. 225-248
  • Book chapter (peer-reviewed)abstract
    • Two-dimensional conformal field theory (CFT) can be defined through its correlation functions. These must satisfy certain consistency conditions which arise from the cutting of world sheets along circles or intervals. The construction of a (rational) CFT can be divided into two steps, of which one is complex-analytic and one purely algebraic. We realise the algebraic part of the construction with the help of three-dimensional topological field theory and show that any symmetric special Frobenius algebra in the appropriate braided monoidal category gives rise to a solution. A special class of examples is provided by two-dimensional topological field theories, for which the relevant monoidal category is the category of vector spaces
  •  
4.
  • Airey, John (author)
  • Disciplinary literacy
  • 2013
  • In: Scientific literacy: teori och praktik. - Malmö, Sweden : Gleerups Utbildning AB. - 9789140684431 ; , s. 41-58
  • Book chapter (peer-reviewed)abstract
    • I detta kapitel läggs fram ett nytt begrepp, disciplinary literacy, som ett alternativ till scientific literacy. För varje ämne, disciplinary literacy inriktar sig mot kommunikativa praktiker inom tre miljöer: akademin, arbetsplatsen och samhället och definieras som förmågan att delta i dessa ämnesrelaterade kommunikativa praktiker på ett lämpligt sätt. Frågeställningen för kapitlet är om det kan vara givande att betrakta främjandet av studenters disciplinary literacy som ett av de huvudsakliga målen med universitetsstudier. Tillämpningen av begreppet illustreras genom material hämtat från ett forskningsprojekt där högskolelärare i fysik från Sverige och Sydafrika diskuterar de lärandemål de har för sina studenter.
  •  
5.
  •  
6.
  • de Winter, James (author)
  • Teaching and Learning Physics
  • 2017
  • In: Science Education An International Course Companion. - : Sense Publishers. - 9789463007474 ; , s. 311-324
  • Book chapter (peer-reviewed)
  •  
7.
  • Fredlund, Tobias, et al. (author)
  • Att välja lämpliga semiotiska resurser
  • 2013
  • In: Scientific literacy. - Malmö, Sweden : Gleerups Utbildning AB. - 9789140684431 ; , s. 59-70, s. 59-70
  • Book chapter (peer-reviewed)
  •  
8.
  •  
9.
  • Airey, John, et al. (author)
  • Disciplinary learning in a second language: A case study from university physics
  • 2007
  • In: Researching Content and Language Integration in Higher Education. - Maastricht : Maastricht University Language Centre. - 978 90 5625 269 4 ; , s. 161-171
  • Book chapter (peer-reviewed)abstract
    • There is a popular movement within Swedish universities and university colleges towards delivery of courses and degree programmes through the medium of English. This is particularly true in natural science, engineering and medicine where such teaching has been commonplace for some time. However, the rationale for using English as the language of instruction appears to be more a pragmatic response to outside pressures rather than a conscious educational decision. This situation has recently been challenged with the publication of the report of the Parliamentary Committee for the Swedish Language, Mål i Mun, which discusses the effects of so called domain losses to English. This paper gives an overview of the continuing debate surrounding teaching through the medium of English, and examines some of the research carried out in this area. In contrast to the wealth of studies carried out in the pre-university school world, very few studies have been identified at university level. One conclusion is that little appears to be known about what goes on when Swedish university students are taught in English by Swedish lecturers. The paper concludes by suggesting a number of research questions that need to be addressed in order to better understand this area. This paper will be of interest to anyone who teaches, or plans to teach, university subjects through the medium of English.
  •  
10.
  • Airey, John, 1963-, et al. (author)
  • What does it mean to understand a physics equation? : A study of undergraduate answers in three countries
  • 2019
  • In: Bridging Research and Practice in Science Education. - Cham, Switzerland : Springer. - 9783030172183 ; , s. 225-239
  • Book chapter (peer-reviewed)abstract
    • In this chapter we are interested in how undergraduate physics students in three countries experience the equations they meet in their education. We asked over 350 students in the US, Australia and Sweden the same simple question: How do you know when you understand a physics equation? Students wrote free-text answers to this question and these were transcribed and coded. The similarity of the answers we received across the three countries surprised us and led to us treating all the answers as a single “pool of meaning”. Qualitative analysis resulted in eight distinct themes: significance, origin, description, prediction, parts, relationships, calculation and explanation. Drawing on diSessa’s theory of knowledge in pieces, we argue that each theme represents a different disciplinary aspect of student understanding of physics equations. Educationally, we wondered how best to highlight the more holistic view of equations that analysis of the combined datasets revealed. This prompted us to write a set of questions that reflect the original data with respect to the eight themes. We suggest that when students meet a new physics equation they may ask themselves these questions in order to check their holistic understanding of what the equation represents. In continuing work we are asking our same original question to a cohort of physics lecturers in order to consolidate the themes we have already identified and to look for further themes. We are also trialling the themes and related questions that we generated in teaching situations. Here, we are interested in whether students perceive the questions as helpful in their learning. ReferencesAirey, J. (2012). “I don’t teach language.” The linguistic attitudes of physics lecturers in Sweden. AILA Review, 25, 64–79. doi:10/1075/aila.25.05airAirey, J., & Larsson, J. (2018).  Developing Students’ Disciplinary Literacy? The Case of University Physics. In: Tang K-S, Danielsson K. (eds) Global Developments in Literacy Research for Science Education. Springer, Cham, Switzerland, pp 357-376. doi:10.1007/978-3-319-69197-8_21Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27-49. doi:10.1002/tea.20265Bernstein, B. (2000). Pedagogy, symbolic control and identity: theory, research and critique. Rowman and Littlefield, LanhamBogdan, R. C., & Biklen, S .R. (1992). Qualitative research for education: An introduction to theory and methods. 2 edn. Allyn and Bacon, Inc, BostonChin, C., & Brown, D. E. (2000). Learning in Science: A Comparison of Deep and Surface Approaches. Journal of Research in Science Teaching, 37(2), 109-138. doi: 10.1002/(SICI)1098-2736(200002)37:2<109::AID-TEA3>3.0.CO;2-7diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2 & 3), 105-226. doi: 10.1207/s1532690xci1002&3_2diSessa, A. A. (2018). A Friendly Introduction to “Knowledge in Pieces”: Modeling Types of Knowledge and Their Roles in Learning. In: Kaiser G., Forgasz, H., Graven, M., Kuzniak, A., Simmt, E., & Xu B. (eds) Invited Lectures from the 13th International Congress on Mathematical Education. ICME-13 Monographs. Springer, Cham. doi: 10.1007/978-3-319-72170-5_5 Domert, D., Airey, J., Linder, C., & Kung, R. (2007). An exploration of university physics students' epistemological mindsets towards the understanding of physics equations. NorDiNa, Nordic Studies in Science Education, 3(1), 15-28Eichenlaub, M., & Redish, E. F. (2018). Blending physical knowledge with mathematical form in physics problem solving. In: Pospiech, G., Michelini, M., &Eylon, B. (eds) Mathematics in Physics Education Research. Springer. arXiv:1804.01639Hechter, R. P. (2010). What does 'I understand the equation' really mean? Physics Education, 45 132-133. doi: 10.1088/0031-9120/45/2/F01Hegde, B., & Meera, B. N. (2012). How do they solve it? An insight into the learner's approach to the mechanism of physics problem solving. Physical Review Special Topics Physics Education Research, 8:010109. doi: 10.1103/PhysRevSTPER.8.010109Hsu, L., Brewe, E., Foster, T. M., & Harper, K. A. (2004). Resource Letter RPS-1: Research in problem solving. American Journal of Physics,72(9), 1147-1156. doi: 10.1119/1.1763175Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511815355Lising, L., & Elby, A. (2005). The impact of epistemology on learning: A case study from introductory physics. American Journal of Physics,73, 372-382.doi:10.1119/1.1848115Marton, F., & Booth, S. (1997). Learning and awareness. Lawrence Erlbaum Associates, Mahwah, NJMarton, F., & Säljö, R. (1976). On qualitative differences in learning. II - outcome as a function of the learner's conception of the task. British Journal of Educational Psychology,  46, 115-127. doi: 10.1111/j.2044-8279.1976.tb02980.xMay, D. B., & Etkina, E. (2002). College physics students’ epistemological self-reflection and its relationship to conceptual learning. American Journal of Physics, 70(12),1249-1258. doi: 10.1119/1.1503377Nordling, C., & Österman, J. (2006). Physics Handbook. 8 edn. Studentlitteratur, Lund, SwedenRedish, E. (1994). Implications of cognitive studies for teaching physics. American Journal of Physics, 62(9), 796-803. doi: 10.1119/1.17461Sherin, B. L. (2001). How students understand physics equations. Cognitive Instruction, 19, 479-541. doi: 10.1207/S1532690XCI1904_3Swedish Research Council (2017) Good Research Practice. Swedish Research Council, StockholmTuminaro, J. (2004). A Cognitive framework for analyzing and describing introductory students' use of mathematics in physics. PhD Thesis. University of Maryland
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 122
Type of publication
Type of content
peer-reviewed (79)
other academic/artistic (30)
pop. science, debate, etc. (13)
Author/Editor
Linder, Cedric (5)
Rickman, Hans (4)
Eriksson, O (3)
Sabin, John R. (3)
Johansson, Tord (2)
Lundberg, Marcus, 19 ... (2)
show more...
Håkanson, Lars (2)
Brändas, Erkki, Prof ... (2)
Boschloo, Gerrit (2)
Hagfeldt, Anders (2)
Zhang, Jie (1)
Charpentier Ljungqvi ... (1)
Ryden, Lars (1)
Zhang, Z. (1)
Wang, Y. (1)
Pérez de los Heros, ... (1)
Mukherjee, S. (1)
Andersson, G (1)
Karlsson, Magnus (1)
Ahuja, Rajeev, 1965- (1)
Pazoki, Meysam (1)
Hjörvarsson, Björgvi ... (1)
Fernando, Mahendra (1)
Marciniewski, Pawel (1)
Mattsson, A (1)
Zhang, Shi-Li (1)
Edwards, Katarina (1)
Styring, Stenbjörn (1)
Johansson, Börje (1)
Karlsson, Mikael (1)
Davour, Anna (1)
Araujo, Carlos Moyse ... (1)
Bergvall, Nils (1)
Larsson, Johanna, 19 ... (1)
Lomoth, Reiner (1)
Seibert, Jan (1)
Huss, Matthias (1)
Svedlindh, P (1)
Kochukhov, Oleg (1)
Gustafsson, Bengt (1)
Larsson, Karin (1)
Simon, M. (1)
Brändas, Erkki (1)
Brändas, Erkki J., 1 ... (1)
Gudmundsson, Jon Tom ... (1)
Såthe, C. (1)
Butorin, Sergei (1)
Nordgren, Joseph (1)
Agåker, Marcus (1)
Rubensson, Jan-Erik (1)
show less...
University
Royal Institute of Technology (5)
Stockholm University (4)
Linnaeus University (4)
Karlstad University (2)
University of Gothenburg (1)
show more...
University of Gävle (1)
Örebro University (1)
show less...
Language
English (114)
Swedish (8)
Research subject (UKÄ/SCB)
Natural sciences (122)
Social Sciences (10)
Engineering and Technology (6)
Humanities (5)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view