SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

Träfflista för sökning "AMNE:(NATURAL SCIENCES Physical Sciences Astronomy, Astrophysics and Cosmology) ;lar1:(kau)"

Sökning: AMNE:(NATURAL SCIENCES Physical Sciences Astronomy, Astrophysics and Cosmology) > Karlstads universitet

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Uggla, Claes, 1957-, et al. (författare)
  • Second order cosmological perturbations : simplified gauge change formulas
  • 2019
  • Ingår i: Classical and quantum gravity. - : Institute of Physics (IOP). - 0264-9381 .- 1361-6382. ; 36:3, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present a new formulation of the change of gauge formulas in second order cosmological perturbation theory which unifies and simplifies known results. Our approach is based on defining new second order scalar perturbation variables by adding a multiple of the square of the corresponding first order variables to each second order variable. A bonus is that these new perturbation variables are of broader significance in that they also simplify the analysis of second order scalar perturbations in the super-horizon regime in a number of ways, and lead to new conserved quantities.
  •  
2.
  • Uggla, Claes, 1957-, et al. (författare)
  • Simple expressions for second order density perturbations in standard cosmology
  • 2014
  • Ingår i: Classical and quantum gravity. - : Institute of Physics (IOP). - 0264-9381 .- 1361-6382. ; 31:10, s. 105008-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present four simple expressions for the relativistic first and second order fractional density perturbations for ΛCDM cosmologies in different gauges: the Poisson, uniform curvature, total matter and synchronous gauges. A distinctive feature of our approach is the use of a canonical set of quadratic differential expressions involving an arbitrary spatial function, the so-called comoving curvature perturbation, to describe the spatial dependence, which enables us to unify, simplify and extend previous seemingly disparate results. The simple structure of the expressions makes the evolution of the density perturbations completely transparent and clearly displays the effect of the cosmological constant on the dynamics, namely that it stabilizes the perturbations. We expect that the results will be useful in applications, for example, studying the effects of primordial non-Gaussianity on the large scale structure of the universe.
  •  
3.
  • Sandin, Patrik (författare)
  • Cosmological Models and Singularities in General Relativity
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This is a thesis on general relativity. It analyzes dynamical properties of Einstein's field equations in cosmology and in the vicinity of spacetime singularities in a number of different situations. Different techniques are used depending on the particular problem under study; dynamical systems methods are applied to cosmological models with spatial homogeneity; Hamiltonian methods are used in connection with dynamical systems to find global monotone quantities determining the asymptotic states; Fuchsian methods are used to quantify the structure of singularities in spacetimes without symmetries. All these separate methods of analysis provide insights about different facets of the structure of the equations, while at the same time they show the relationships between those facets when the different methods are used to analyze overlapping areas.The thesis consists of two parts. Part I reviews the areas of mathematics and cosmology necessary to understand the material in part II, which consists of five papers. The first two of those papers uses dynamical systems methods to analyze the simplest possible homogeneous model with two tilted perfect fluids with a linear equation of state. The third paper investigates the past asymptotic dynamics of barotropic multi-fluid models that approach a `silent and local' space-like singularity to the past. The fourth paper uses Hamiltonian methods to derive new monotone functions for the tilted Bianchi type II model that can be used to completely characterize the future asymptotic states globally. The last paper proves that there exists a full set of solutions to Einstein's field equations coupled to an ultra-stiff perfect fluid that has an initial singularity that is very much like the singularity in Friedman models in a precisely defined way.
  •  
4.
  • Berg, Marcus, 1973-, et al. (författare)
  • Growth Histories in Bimetric Massive Gravity
  • 2012
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - Bristol : Institute of Physics (IOP). - 1475-7516. ; :12
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform cosmological perturbation theory in Hassan-Rosen bimetric gravity for general homogeneous and isotropic backgrounds. In the de Sitter approximation, we obtain decoupled sets of massless and massive scalar gravitational fluctuations. Matter perturbations then evolve like in Einstein gravity. We perturb the future de Sitter regime by the ratio of matter to dark energy, producing quasi-de Sitter space. In this more general setting the massive and massless fluctuations mix. We argue that in the quasi-de Sitter regime, the growth of structure in bimetric gravity differs from that of Einstein gravity.
  •  
5.
  • Uggla, Claes, 1957-, et al. (författare)
  • Cosmological perturbation theory revisited
  • 2011
  • Ingår i: Classical and quantum gravity. - : Institute of Physics (IOP). - 0264-9381 .- 1361-6382. ; 28:17, s. 175017-175043
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasingly accurate observations are driving theoretical cosmology towards the use of more sophisticated descriptions of matter and the study of nonlinear perturbations of Friedmann–Lemaitre cosmologies, whose governing equations are notoriously complicated. Our goal in this paper is to formulate the governing equations for linear perturbation theory in a particularly simple and concise form in order to facilitate the extension to nonlinear perturbations. Our approach has several novel features. We show that the use of so-called intrinsic gauge invariants has two advantages. It naturally leads to (i) a physically motivated choice of a gauge invariant associated with the matter density, and (ii) two distinct and complementary ways of formulating the evolution equations for scalar perturbations, associated with the work of Bardeen and of Kodama and Sasaki. In the first case, the perturbed Einstein tensor gives rise to a second-order (in time) linear differential operator, and in the second case to a pair of coupled first-order (in time) linear differential operators. These operators are of fundamental importance in cosmological perturbation theory, since they provide the leading order terms in the governing equations for nonlinear perturbations
  •  
6.
  • Uggla, Claes, 1957-, et al. (författare)
  • Scalar cosmological perturbations
  • 2012
  • Ingår i: Classical and quantum gravity. - : Institute of Physics (IOP). - 0264-9381 .- 1361-6382. ; 29:10, s. 105002-105029
  • Tidskriftsartikel (refereegranskat)abstract
    • Scalar perturbations of Friedmann–Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress–energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress–energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations
  •  
7.
  • Alho, Artur, et al. (författare)
  • Dynamical systems in perturbative scalar field cosmology
  • 2020
  • Ingår i: Classical and quantum gravity. - : American Institute of Physics (AIP). - 0264-9381 .- 1361-6382. ; 37:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We derive a newregulardynamical system on a three-dimensionalcompactstate space describing linear scalar perturbations of spatially flat Robertson-Walker geometries for relativistic models with a minimally coupled scalar field with an exponential potential. This enables us to construct the global solution space, illustrated with figures, where known solutions are shown to reside on special invariant sets. We also use our dynamical systems approach to obtain new results about the comoving and uniform density curvature perturbations. Finally we show how to extend our approach to more general scalar field potentials. This leads to state spaces where the state space of the models with an exponential potential appears as invariant boundary sets, thereby illustrating their role as building blocks in a hierarchy of increasingly complex cosmological models.
  •  
8.
  • Alho, Artur, et al. (författare)
  • Inflationary alpha-attractor cosmology : A global dynamical systems perspective
  • 2017
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 95:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We study flat Friedmann-Lemaitre-Robertson-Walker alpha-attractor E- and T-models by introducing a dynamical systems framework that yields regularized unconstrained field equations on two-dimensional compact state spaces. This results in both illustrative figures and a complete description of the entire solution spaces of these models, including asymptotics. In particular, it is shown that observational viability, which requires a sufficient number of e-folds, is associated with a particular solution given by a one-dimensional center manifold of a past asymptotic de Sitter state, where the center manifold structure also explains why nearby solutions are attracted to this "inflationary attractor solution." A center manifold expansion yields a description of the inflationary regime with arbitrary analytic accuracy, where the slow-roll approximation asymptotically describes the tangency condition of the center manifold at the asymptotic de Sitter state.
  •  
9.
  • Alho, Artur, et al. (författare)
  • Quintessence from a state space perspective
  • 2023
  • Ingår i: Physics of the Dark Universe. - : Elsevier. - 2212-6864. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • We use dynamical systems methods to study quintessence models in a spatially flat and isotropic spacetime with matter and a scalar field with potentials for which lambda(v) = -V,v/V is bounded, thereby going beyond the exponential potential for which lambda(v) is constant. The scalar field equation of state parameter wv plays a central role when comparing quintessence models with observations, but with the dynamical systems used to date wv is an indeterminate, discontinuous, function on the state space in the asymptotically matter dominated regime. Our first main result is the introduction of new variables that lead to a regular dynamical system on a bounded three-dimensional state space on which wv is a regular function. The solution trajectories in the state space then provide a visualization of different types of quintessence evolution, and how initial conditions affect the transition between the matter and scalar field dominated epochs; this is complemented by graphs wv(N), where N is the e-fold time, which enables characterizing different types of quintessence evolution.
  •  
10.
  • Berg, Marcus, et al. (författare)
  • Sequestering in string compactifications
  • 2011
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :6, s. 134-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the mediation of supersymmetry breaking in string compactifications whose moduli are stabilized by nonperturbative effects. We begin with a critical review of arguments for sequestering in supergravity and in string theory. We then show that geometric isolation, even in a highly warped space, is insufficient to achieve sequestering: in type IIB compactifications, nonperturbative superpotentials involving the Kahler moduli introduce cross-couplings between well-separated visible and hidden sectors. The scale of the resulting soft terms depends on the moduli stabilization scenario. In the Large Volume Scenario, nonperturbative superpotential contributions to the soft trilinear A terms can introduce significant flavor violation, while in KKLT compactifications their effects are negligible. In both scenarios, the contributions to the mu and B mu parameters cannot be ignored in general. We conclude that sequestered supersymmetry breaking is possible in nonperturbatively-stabilized compactifications only if a mechanism in addition to bulk locality suppresses superpotential cross-couplings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy