SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

Träfflista för sökning "AMNE:(NATURAL SCIENCES Physical Sciences Astronomy, Astrophysics and Cosmology) ;lar1:(ri)"

Sökning: AMNE:(NATURAL SCIENCES Physical Sciences Astronomy, Astrophysics and Cosmology) > RISE

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Waller, William H., et al. (författare)
  • FM14 Session 2: Communicating Astronomy in our Changing World
  • 2018
  • Ingår i: Proceedings of the International Astronomical Union. - : Cambridge University Press. - 1743-9213 .- 1743-9221. ; 14:A30, s. 528-530
  • Tidskriftsartikel (refereegranskat)abstract
    • As the IAU heads towards its second century, many changes have simultaneously transformed Astronomy and the human condition world-wide. Amid the amazing recent discoveries of exoplanets, primeval galaxies, and gravitational radiation, the human condition on Earth has become blazingly interconnected, yet beset with ever-increasing problems of over-population, pollution, and never-ending wars. Fossil-fueled global climate change has begun to yield perilous consequences. And the displacement of people from war-torn nations has reached levels not seen since World War II. © International Astronomical Union 2020.
  •  
2.
  • Corpolongo, A., et al. (författare)
  • SHERLOC Raman Mineral Class Detections of the Mars 2020 Crater Floor Campaign
  • 2023
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley and Sons Inc. - 2169-9097 .- 2169-9100. ; 128:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The goals of NASA's Mars 2020 mission include searching for evidence of ancient life on Mars, studying the geology of Jezero crater, understanding Mars' current and past climate, and preparing for human exploration of Mars. During the mission's first science campaign, the Perseverance rover's SHERLOC deep UV Raman and fluorescence instrument collected microscale, two-dimensional Raman and fluorescence images on 10 natural (unabraded) and abraded targets on two different Jezero crater floor units: Séítah and Máaz. We report SHERLOC Raman measurements collected during the Crater Floor Campaign and discuss their implications regarding the origin and history of Séítah and Máaz. The data support the conclusion that Séítah and Máaz are mineralogically distinct igneous units with complex aqueous alteration histories and suggest that the Jezero crater floor once hosted an environment capable of supporting microbial life and preserving evidence of that life, if it existed. 
  •  
3.
  • Kminek, G, et al. (författare)
  • COSPAR Sample Safety Assessment Framework (SSAF)
  • 2022
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc.. - 1531-1074 .- 1557-8070. ; 22:S1, s. S186-S216
  • Tidskriftsartikel (refereegranskat)abstract
    • The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders. © Gerhard Kminek et al., 2022; 
  •  
4.
  •  
5.
  • Goetz, W., et al. (författare)
  • MOMA : The challenge to search for organics and biosignatures on Mars
  • 2016
  • Ingår i: International Journal of Astrobiology. - : Cambridge University Press. - 1473-5504 .- 1475-3006. ; 15:3, s. 239-250
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes strategies to search for, detect, and identify organic material on the surface and subsurface of Mars. The strategies described include those applied by landed missions in the past and those that will be applied in the future. The value and role of ESA's ExoMars rover and of her key science instrument Mars Organic Molecule Analyzer (MOMA) are critically assessed.
  •  
6.
  • Krüger, Harald, et al. (författare)
  • COSIMA-Rosetta calibration for in situ characterization of 67P/Churyumov-Gerasimenko cometary inorganic compounds
  • 2015
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 117, s. 35-44
  • Tidskriftsartikel (refereegranskat)abstract
    • COmetary Secondary Ion Mass Analyzer (COSIMA) is a time-of-flight secondary ion mass spectrometry (TOF-SIMS) instrument on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust particles. It has a mass resolution m/Δm of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary particles.
  •  
7.
  • Sundin, Maria, 1965, et al. (författare)
  • Space Sports - Sailing in Space
  • 2016
  • Ingår i: Proceedings from icSports 2016, 4th International Conference on Sport Sciences Research and Technology Support, Porto, Portugal, 7-9 november 2016. - : SCITEPRESS - Science and Technology Publications. - 9789897582059 ; , s. 141-146
  • Konferensbidrag (refereegranskat)abstract
    • Titan is the largest moon of Saturn, and apart from the Earth it is the only body in our solar system where a liquid exists on the surface. Within the last ten years a system of lakes and rivers have been discovered. The climate and seasonal cycles of Titan are still not very well known, but the composition and pressure are fairly well established. Perhaps in the future boats will sail the lakes of Titan for research purposes or even sport. The purpose of this paper is to give an overview of the concept of space sports, the conditions of Titan and to calculate important parameters of sailing such as floatability, stability, hull resistance and sail forces. This paper shows that if a sailing yacht on Titan will have twice as large displacement as on Earth, it will be 2.6 times less stable for the same beam. Since friction will be smaller, it will be faster than on Earth at low speed, but significantly slower at high speeds due to the wave generation. The same sail area is required to get the same sail forces if the average wind is 3 m/s, while a 9 times larger sail area is required for if the wind speed is only 1 m/s.
  •  
8.
  • Sundin, Maria, 1965, et al. (författare)
  • Vi ska segla i metan på Titan
  • 2016
  • Ingår i: Forskning & Framsteg. - : Forskning & Framsteg. - 0015-7937. ; 2016:7, s. 42-47:7, s. 42-47-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
9.
  • Jakubek, Ryan S., et al. (författare)
  • Calibration of Raman Bandwidths on the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Deep Ultraviolet Raman and Fluorescence Instrument Aboard the Perseverance Rover
  • 2023
  • Ingår i: Applied Spectroscopy. - : SAGE Publications Inc.. - 0003-7028 .- 1943-3530.
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we derive a simple method for calibrating Raman bandwidths for the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard NASA’s Perseverance rover. Raman bandwidths and shapes reported by an instrument contain contributions from both the intrinsic Raman band (IRB) and instrumental artifacts. To directly correlate bandwidth to sample properties and to compare bandwidths across instruments, the IRB width needs to be separated from instrumental effects. Here, we use the ubiquitous bandwidth calibration method of modeling the observed Raman bands as a convolution of a Lorentzian IRB and a Gaussian instrument slit function. Using calibration target data, we calculate that SHERLOC has a slit function width of 34.1 cm–1. With a measure of the instrument slit function, we can deconvolve the IRB from the observed band, providing the width of the Raman band unobscured by instrumental artifact. We present the correlation between observed Raman bandwidth and intrinsic Raman bandwidth in table form for the quick estimation of SHERLOC Raman intrinsic bandwidths. We discuss the limitations of using this model to calibrate Raman bandwidth and derive a quantitative method for calculating the errors associated with the calibration. We demonstrate the utility of this method of bandwidth calibration by examining the intrinsic bandwidths of SHERLOC sulfate spectra and by modeling the SHERLOC spectrum of olivine. 
  •  
10.
  • Demidova, S. I., et al. (författare)
  • A micrometeorite from a stony asteroid identified in Luna 16 soil
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:5, s. 560-567
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the intense cratering history of the Moon, very few traces of meteoritic material have been identified in the more than 380 kg of samples returned to Earth by the Apollo and Luna missions. Here we show that an ~200-µm-sized fragment collected by the Luna 16 mission has extra-lunar origins and probably originates from an LL chondrite with similar properties to near-Earth stony asteroids. The fragment has not experienced temperatures higher than 400 °C since its protolith formed early in the history of the Solar System. It arrived on the Moon, either as a micrometeorite or as the result of the break-up of a bigger impact, no earlier than 3.4 Gyr ago and possibly around 1 Gyr ago, an age that would be consistent with impact ages inferred from basaltic fragments in the Luna 16 sample and of a known dynamic upheaval in the Flora asteroid family, which is thought to be the source of L and LL chondrite meteorites. These results highlight the importance of extra-lunar fragments in constraining the impact history of the Earth–Moon system and suggest that material from LL chondrite asteroids may be an important component.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy