SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURVETENSKAP Kemi) ;mspu:(licentiatethesis)"

Sökning: AMNE:(NATURVETENSKAP Kemi) > Licentiatavhandling

  • Resultat 1-10 av 848
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maurina Morais, Eduardo, 1989 (författare)
  • Synthesis of protic ionic liquids. Challenges and solutions for the synthesis of pure compounds.
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The urgent need to diversify our energy matrix is responsible for a renewed interest in fuel cell technology, which can use hydrogen gas, a renewable green fuel, as an energy source. This technology is currently a commercially available option, however, it still requires technological improvements before it can be widely used for different applications. One way this technology could potentially be improved is by increasing its temperature range of operation by developing new, anhydrous proton conducting materials. Protic ionic liquids, which are organic salts with low melting temperatures, are interesting candidates for this application, since they can conduct protons in the operational conditions of fuel cells and without the need of water. These compounds can be synthesized by a simple acid-base neutralization reaction, but certain considerations must be taken in order to obtain high quality (dry and pure) protic ionic liquids. In this thesis, a series of triazolium and imidazolium based protic ionic liquids were synthesized using a solvent-free method designed to address several limitations encountered with other commonly used methods. Using this method, pure (98-99% m/m) and dry (128-553 ppm of water) protic ionic liquids were synthesized (in a laboratory scale) without the need for purification methods that require heating the ionic liquid, hence avoiding the common issue of thermal decomposition. This method was also designed to allow for the accurate measurement of acid and base, and for the controlled mixing of both compounds, which is essential to avoid producing impure protic ionic liquids with excess of either acid or base. The system is consists of only glass and chemically resistant polymer(PTFE and PVDF) parts, which avoids other contaminants that can result from unwanted reactions involving the reagents with common laboratory tools (metallic objects, paper, plastic, etc.). The resulting ionic liquids were carefully analyzed by spectroscopic and thermal analysis methods designed to avoid water absorption, which is known to affect their properties. To complement this experimental characterization, computational chemistry tools were used to assess the ionic liquids’ properties, as well as to assign vibrational modes.
  •  
2.
  • Singh, Shivangi, 1996 (författare)
  • Investigating hydrothermal stability and influence of water on the activity of Cu-CHA catalysts for NH3-SCR
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Selective catalytic reduction of nitrogen oxides (NOx) with NH3 as a reducing agent (NH3- SCR) is a leading technology for diesel exhaust emission control. Cu-exchanged zeolites with the chabazite structure (Cu-CHA) have emerged as the preferred catalysts thanks to its high activity and hydrothermal stability. Hydrothermal stability is related to dealumination, i.e. removal of aluminum from the zeolite framework to form extraframework aluminum, at high temperatures in the presence of water vapor. Copperexchanged chabazite (Cu-CHA) zeolites have higher hydrothermal stability compared to H-chabazite (H-CHA). To understand the delayed dealumination of Cu-CHA catalysts, we have investigated the reaction paths for dealumination in H-CHA and Cu-CHA using density functional theory (DFT) calculations combined with microkinetic modeling. We find that Cu-CHA and H-CHA follow similar four-step hydrolysis processes, yet the dealumination of Cu-CHA has higher energy barriers, suggesting stabilization of the CHA structure by Cu ions. Furthermore, the preferred reaction product upon complete dealumination of Cu-CHA is a copper-aluminate like species bound to the zeolite framework. The microkinetic analysis quantifies the increased stability of Cu-CHA as compared to H-CHA. In addition to the high-temperature dealumination, we investigated the role of water on low-temperature SCR by experimentally measuring the activity and reaction order of water. The reaction order of water is found to be increasingly negative with increasing water pressure. DFT calculations reveal that water blocks the active Cu-sites and a DFT-based microkinetic model reproduces the measured change of reaction order with water pressure.
  •  
3.
  • Arvidsson, Adam, 1990 (författare)
  • Partial methane oxidation from electronic structure calculations
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Investigating catalytic reactions with computational methods is a powerful approach to understand fundamental aspects of catalytic reactions and find ways to guide catalytic design. Partial methane oxidation is one example of a reaction with intriguing challenges, where a detailed atomistic approach may help to unravel the bottlenecks of this, as of yet, inefficient reaction. Although methane only needs one oxygen atom for conversion to methanol, the direct oxidation is difficult; it is in fact so difficult that at many oil extraction sites, the methane that inevitably accompanies the crude oil is flared into carbon dioxide and water as gas-phase methane is too inconvenient to store and transport.The main challenge with partial oxidation of methane is to selectively control the oxidation and steer it towards methanol and prevent over-oxidation to CO2. There exist natural enzymes that can partially oxidize methane to methanol at ambient pressure and temperature, although very slowly. One inorganic analogue to these naturally occurring enzymes are zeolites, a porous material that can readily be synthesized and that have been shown to convert methane to methanol at ambient conditions with a high selectivity (>90 %). This has been realized for zeolites ion-exchanged with different metals, such as iron, cobalt, nickel, and copper. Although there have been many attempts to determine the active site for the reaction, there is still no consensus. One candidate that has been put forth is a [Cu-O-Cu]2+ motif experimentally characterized in the ZSM-5 zeolite. In this thesis, partial oxidation of methane is investigated, focusing on this dimer motif. By combining density functional theory calculations with microkinetic modelling, the catalytic performance of the dimer motif is investigated with a simple reaction mechanism for copper, but also with the copper atoms exchanged with nickel, cobalt, iron, silver, or gold. From these results, it is clear that this particular dimer site is a relevant candidate only for copper, and can be excluded in the continued search for active sites in nickel, cobalt, and iron ion-exchanged ZSM-5.To further understand how methanol is formed and interacts with Cu-ZSM-5, experimental and calculated infrared frequencies are compared for methanol and other adsorbates. The partial oxidation of methane is also studied for other systems with oxidants other than oxygen. In particular, methane oxidation with H2S to CH3SH and H2 is explored on molybdenum sulfide clusters.
  •  
4.
  • Tyumentsev, Mikhail S, 1988 (författare)
  • Development of Polyamide Solvent Extraction Reagents for Trivalent Lanthanides
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Rare earth elements (REEs), including lanthanides, are critical materials for many industrial technologies. As a result recycling of end-of-life products containing REEs might be beneficial, as this could partially satisfy the growing demands of industry for these elements. However, recycling of end-of-life products is often technically and/or commercially challenging. One possible method for the recycling of such materials is a hydrometallurgical treatment of wastes, which includes leaching of valuable metals (e.g. lanthanides) with mineral acids followed by solvent extraction for isolation and separation of the metals. As part of our efforts towards better REEs recycling, novel polyfunctional amides (polyamides) have been synthesized and tested as solvent extraction reagents for trivalent lanthanides in this work. The structure of the polyamide ligands was shown to affect largely the distribution ratios of trivalent lanthanides. It is very likely that the ability to form chelate complexes with lanthanide(III) ions is an important feature of the polyamides as solvent extraction reagents. It was demonstrated that it is possible to increase the distribution ratios of trivalent lanthanides using malonamides as extractants by increasing the denticity of the ligands. Thus the distribution ratios of lanthanide(III) ions obtained with the tetraamide 2,2’-(1,2-phenylenebis(methylene))bis(N,N,N’,N’-tetrabutylmalonamide), bearing two N,N,N’N’-tetrabutylmalonamide units on an ortho-xylylene platform, were up to one hundred times greater (under particular experimental conditions) than those with the diamide – N,N,N’N’-tetrabutylmalonamide – in two diluents – nitrobenzene and 1,2-dichlorobenzene. The increase of the distribution ratios of trivalent lanthanides obtained with this tetraamide can be attributed to the entropic effect. This conclusion follows from the studies of the stoichiometry of europium(III) extraction with the tetraamide, from the comparison of the distribution ratios of trivalent lanthanides obtained with the tetraamide and its structural isomers, and from the single-crystal diffraction studies of the neodymium(III) nitrate complex with the analogue of the tetraamide. It was shown that solvent extraction properties of the synthesized amides are sensitive to the nature of the diluent. Polar diluents promote the extraction of trivalent lanthanides with the amides. It was demonstrated that the use of the extraction chromatography resin with N,N,N’N’-tetrabutylmalonamide as an extractant and polystyrene as a support potentially can relieve the complications (e.g. toxicity, the third liquid phase formation etc.) introduced to the solvent extraction process by diluents. However further studies are needed to prove the feasibility of this alternative.
  •  
5.
  • Nilsson, Robin, 1993 (författare)
  • Interactions Between Water and Cellulose Esters
  • 2022
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biopolymers, which are produced from natural sources, are gaining interest as a potential replacement for fossil-based polymers. As such, they are already widely used in several industries, including the food, healthcare, and personal care industries. To harness the full potential of biopolymers as materials in new products designed for specific tasks, an ability to accurately predict their properties and how these properties change in different environments, is desirable. Hansen Solubility Parameters (HSP) combine dispersive, polar, and hydrogen bonding energies to understand interactions between molecules. This thesis explores the potential use of HSP as predictors of glass transition temperatures (Tg) and water interactions. It also focuses on elucidating the effect of an increased side-chain length of cellulose esters on their thermal properties, structural properties, and water interactions, together with how these properties are affected by the absorption of water. The cellulose esters studied here were cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate. The HSP showed that the dispersive energy dominates the total cohesive energy, followed by the hydrogen bonding and then the polar energy. Counter-intuitively, the Tg decreased with an increased total cohesive energy. The HSP explained this phenomenon, namely, that the increased length of the substituents screened the short-range hydrogen bonds. A similar effect was observed for water solubility and penetration into the cellulose esters, which decreased with increasing side-chain lengths despite the approximately constant hydrogen bonding energies. This indicates the importance of focusing on each of the different interaction parameters instead of only the total HSP.
  •  
6.
  • Boge, Lukas, 1987 (författare)
  • Lipid-based liquid crystals as drug delivery vehicles for antimicrobial peptides
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The development of antimicrobial resistance is a great challenge within the health sector around the world. The demand for new efficient treatments is alarming in order to treat various bacterial infections in the near future. Antimicrobial peptides (AMPs) are a group of novel antibiotics that have gain more and more attraction the past decade. However, AMPs suffers from relatively low stability due to proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are highly needed for achieving efficient treatments. In this thesis, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for three AMPs (AP114, DPK-060 and LL-37). Both bulk gels and discrete dispersed structures, i.e. cubosomes and hexosomes have been studied. Moreover, two different peptide loading approaches for the cubosomes were tested and compared; pre- and post-loading. Characterization of the LC structures was performed using small-angle x-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by liquid chromatography. The antimicrobial effect of the AMP loaded LC nanoparticles (LCNPs) was studied in vitro using minimum inhibitory concentration (MIC) and time-kill assays. Proteolytic protection was investigated by incubating the formulations with two elastases and the antimicrobial effect after proteolysis was studied using radial diffusion assay (RDA). Results showed that the most hydrophobic peptide (AP114) was prone to induce an increase in negative curvature of the bulk cubic LC gel, hence pushing the system towards a hexagonal structure. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. The cubic pre- and post-loaded LCNPs displayed promising antimicrobial activity, and sometimes could a synergetic effect be observed, resulting in a slightly better activity than the unformulated AMP. The hexagonal LCNPs were found to be very efficient in encapsulating the AMPs, but did not display any antimicrobial effect, indicating insufficient delivery of peptide to the bacteria. Moreover, cubosomes post-loaded with LL-37 was found to protect the peptide from proteolytic degradation, resulting in a significant better bactericidal effect after proteolysis.
  •  
7.
  • Sauer, Christopher, 1993 (författare)
  • Green aromatics for a bio-based economy - Valorization of biomass derived model compounds over zeolites studied by online analysis
  • 2021
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the strive towards sustainable chemical production, its carbon-based products can no longer be produced from fossil resources but need to be manufactured from a renewable feedstock. Simple aromatic building blocks like benzene, toluene and xylenes (BTX) can be obtained by catalytic valorization of biomass derived platform molecules such as furans provided efficient catalysts can be formulated. To evaluate catalysts for the conversion of furans to BTX and study the involved catalytic reactions, advanced analytical methods are needed. The observation of dynamic responses in catalytic activity and selectivity necessitates time-resolved analysis of rather complex hydrocarbon (HC) streams. In this work, an online analysis method combining Fourier transform infrared spectroscopy and ion molecule reaction mass spectrometry has been developed for the direct monitoring of the effluent stream during conversion of furans over zeolite catalysts. The sampling frequency is shown to be at least 4 per minute, which is considerably higher compared to that of separation-based methods operating on time scales of several minutes. A wide range of HCs and other smaller molecules is identified and individual species quantified simultaneously. The carbon balance of around 90% shows that the vast majority of the complex HC stream is indeed analysed. The developed online analysis has been applied to catalytic step-response experiments, where different zeolites were exposed to concentration steps of 2,5-dimethylfuran at steady temperatures. It is found that the HC stream consists of a range of olefins and aromatics, including BTX. Most interestingly, 2,5-dimethylfuran is isomerized to 2,4-dimethylfuran as well as 2- and 3-methyl-2-cyclopenten-1-one. The formation of BTX is linked to the availability of olefins, which is supported by temperature programmed desorption experiments. Furthermore, to build understanding of the catalytic mechanisms, surface species were characterised in situ by use of diffuse reflectance infrared Fourier transform spectroscopy. It is clear that upon adsorption, 2,5-dimethylfuran interacts with the zeolite structure and undergoes transforming reactions to olefins and aromatics upon temperature increase, but further studies are necessary to comprehend how the rather low selectivity towards BTX can be increased by catalyst design.
  •  
8.
  •  
9.
  •  
10.
  • Pedersen, Henrik, 1981- (författare)
  • Experimental and quantum-chemical studies of the surface interactions between organic molecules and nanocrystals of (a) RE2O3 (RE = Y or Gd); and (b) TiOb2
  • 2005
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The increasing interest for using nanocrystals in bio-medical and optical applications has highlighted the need of molecular functionalisation of nanocrystals. Knowledge of how to attach molecules to the nanocrystal surface is a key factor. This thesis focuses on the surface interactions between nanocrystals of (a) RE2O3 (RE = Y or Gd); and (b) TiO2 and organic molecules, which have been studied experimentally and by quantum-chemical calculations with the intent to elucidate the chemisorption characteristics such as adsorption geometries and energies.(a) RE2O3 nanocrystal synthesis was performed by a colloidal method based on polyols and by a rapid combustion method. The products were experimentally characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR), Raman, and X-ray photoelectron spectroscopy (XPS). By quantum chemical calculations the chemisorption of formic acid, DEG, water and TMOS at the surface of RE12O18 clusters was studied. From comparison between calculated and experimental vibrational spectra, the binding mode for formic acid on RE2O3 was inferred to be of bridge or bidentate type. XPS and IR showed that DEG chemisorbs on the particle surface and experimental IR spectra of DEG chemisorbed on RE2O3 were consistent with an adsorption mode where the hydroxyl groups are deprotonated according to the quantum-chemical computations.(b) Synthesis of single-phase rutile TiO2 nanocrystals was done by a sol-gel method and the nanocrystals was subsequently functionalized by organic acids and glycine. Quantum-chemical studies indicate that formic- and acetic acid adsorbs in a bridge or monodentate binding mode, while glycine is suggested to adsorb as a zwitterion with bridge bonded carboxylic group and a hydrogen bonded amino group. However, spectroscopic data showed that the amino acid, unlike the other acids did not adsorb on TiO2 under the given experimental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 848
Typ av publikation
Typ av innehåll
övrigt vetenskapligt/konstnärligt (848)
Författare/redaktör
Blomberg, Lars G (6)
Albertsson, Ann-Chri ... (6)
Emmer, Åsa (5)
Hedenqvist, Mikael, ... (5)
Albertsson, Ann-Chri ... (5)
Hakkarainen, Minna, ... (4)
visa fler...
Ågren, Hans (4)
Adolfsson, Hans, Pro ... (4)
Wågberg, Lars, Profe ... (4)
Roeraade, Johan (4)
Widmalm, Göran, Prof ... (4)
Ek, Monica, professo ... (4)
Hakkarainen, Minna, ... (4)
Gedde, Ulf, Professo ... (4)
Emmer, Åsa, Professo ... (4)
Jonsson, Mats (4)
Kloo, Lars (3)
Himo, Fahmi (3)
Brandell, Daniel (3)
Gedde, Ulf W. (3)
Hedenqvist, Mikael (3)
Edlund, Ulrica (3)
Lindström, Mikael (3)
Norgren, Magnus (3)
Eklund, Per, Associa ... (3)
Johansson, Mats, Pro ... (3)
Erdélyi, Máté (3)
Leygraf, Christofer (2)
Altun, Zeki (2)
Muhammed, Mamoun (2)
Bergquist, Jonas (2)
Uvdal, Kajsa, Profes ... (2)
Wågberg, Lars (2)
Johansson, Mats (2)
Edström, Kristina, P ... (2)
Mäler, Lena, Profess ... (2)
Salek, Pawel (2)
Mannervik, Bengt, Pr ... (2)
Edström, Kristina, P ... (2)
Szabo, Kalman, Profe ... (2)
Finne Wistrand, Anna ... (2)
Leygraf, Christofer, ... (2)
Hultman, Lars, Profe ... (2)
Edlund, Håkan (2)
Theliander, Hans, Pr ... (2)
Dyrager, Christine (2)
Ågren, Hans, Profess ... (2)
Sahlberg, Martin (2)
Ek, Monica (2)
Rosén, Johanna, Prof ... (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (410)
Kungliga Tekniska Högskolan (122)
Stockholms universitet (77)
Uppsala universitet (76)
Linköpings universitet (41)
Luleå tekniska universitet (37)
visa fler...
Lunds universitet (25)
Göteborgs universitet (22)
Karlstads universitet (16)
Mittuniversitetet (11)
Sveriges Lantbruksuniversitet (7)
Umeå universitet (6)
Örebro universitet (3)
Mälardalens universitet (2)
Högskolan i Borås (2)
RISE (2)
Högskolan i Halmstad (1)
Högskolan i Gävle (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (838)
Svenska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (848)
Teknik (178)
Medicin och hälsovetenskap (13)
Samhällsvetenskap (3)
Humaniora (3)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy