SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "FÖRF:(Carina Gunnarsson) ;spr:eng"

Sökning: FÖRF:(Carina Gunnarsson) > Engelska

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fjäll, Stephanie, et al. (författare)
  • CASE STUDY ON SUSTAINABLE AND SELF-SUFFINCENT AGRICULTURE : INTEGRATING GRASS BIOREFINERY, ANEROBIC DIGESTION AND HYDROTHERMAL LIQUEFACTION
  • 2023
  • Ingår i: Proc of EUBCE 2023. - : ETA-Florence Renewable Energies. ; , s. 533-539
  • Konferensbidrag (refereegranskat)abstract
    • The agricultural industry plays a crucial role in transitioning towards a sustainable and fossil-free future. This article explores the potential of biorefineries using biomass from agriculture to reduce emissions and promote self sufficiency. Regarding a concept that integrated anaerobic digestion, grass and legume protein production, and hydrothermal liquefaction. A case study was conducted in the southwestern part of Sweden, involving interviews with a biogas plant and local farmers. The study analyzed the utilization of input goods in agriculture and evaluated the potential of biomass in the area. To assess the potential for farms to become self-sufficient in fuel, protein feed, and plant nutrients. The results show an overall positive outlook of the biorefinery concept. By utilizing 20% of the available biomass in the area can the biorefinery concept annually produce 100 GWh of biogas, 3800 tonnes of grass and legume protein concentrate and 1200 GWh bio-oil. This could theoretically cover 100 % of the need of soy meal, 44% for nitrogen, 50% for phosphorus and 100% for potassium.
  •  
2.
  • de Toro, Alfredo, et al. (författare)
  • Effects of variable weather conditions on baled proportion of varied amounts of harvestable cereal straw, based on simulations
  • 2021
  • Ingår i: Sustainability. - : MDPI AG. - 2071-1050. ; 13:16
  • Tidskriftsartikel (refereegranskat)abstract
    • All harvestable cereal straw cannot be collected every year in regions where wet periods are probable during the baling season, so some Swedish studies have used 'recovery coefficients’ to estimate potential harvestable amounts. Current Swedish recovery coefficients were first formu-lated by researchers in the early 1990s, after discussions with crop advisors, but there are no recent Swedish publications on available baling times and recovery proportions. Therefore, this study evaluated baling operations over a series of years for representative virtual farms and machine systems in four Swedish regions, to determine the available time for baling, baled straw ratio and annual variation in both. The hourly grain moisture content of pre-harvested cereals and swathed straw was estimated using moisture models and real weather data for 22/23 years, and the results were used as input to a model for simulating harvesting and baling operations. Expected available baling time during August and September was estimated to be 39–49%, depending on region, with large annual variation (standard deviation 22%). The average baling coefficient was estimated to be 80– 86%, with 1400 t·year−1 harvestable straw and 15 t·h−1 baling capacity, and the annual variation was also considerable (s.d. 20%). © 2021 by the authors. 
  •  
3.
  • Pari, L., et al. (författare)
  • Performance and work quality of the chaff collection in Sweden : A case study
  • 2021
  • Ingår i: European Biomass Conference and Exhibition Proceedings. - : ETA-Florence Renewable Energies. ; , s. 207-210
  • Konferensbidrag (refereegranskat)abstract
    • Grain chaff could provide 54.8 Mt of additional annual potential biomass in Europe. In the framework of the AGROinLOG H2020 Project, the chaff collection system developed by Thierart company was tested in Sweden to evaluate the amount of biomass collectible, the harvesting losses and performance, and the economic feasibility of the system. Such system allows to collect the chaff separately onto a trailer. The total residual biomass increased by 0.84 t ha−1 without negatively affecting the performance of the combine. 
  •  
4.
  • Casimir, Justin, et al. (författare)
  • Farmers current practices, and their opinion on supplying straw for production of second-generation biofuels in Sweden
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This report presents results from the EU project AGROinLOG (Grant Agreement 727921) and especially focuses on the results from a survey looking at the current practices with straw use in Sweden as well as the farmer’s opinion on supplying straw for the production of second-generation biofuel. The survey was developed as a collaboration between LRF (Federation of Swedish farmers) RISE and Lantmännen.The reader can first read about the context within which the survey was developed and analysed. The questions and the methodology are then presented. The main part of the report presents the questionnaire results before drawing conclusions in line with the project’s objectives.The survey shows that about 60% of the straw from farmers participating in the survey, remains in the field while 40% is harvested mostly for animal production. The county of Skåne, the “ÖSÖ” region (Östergötland, Södermanland, and Örebro counties), the region including Uppsala, Stockholm and Västmanland counties, and the county of Västra Götaland have the largest potential for collection of straw for industrial processes in Sweden. However, farmers from these regions are the most concerned about the decrease of soil quality due to straw removal. The current common practices for straw handling in Sweden, including baling, collection, transport, storage and sale, are highlighted.Some interesting conclusions are drawn concerning the logistics needed for the handling of straw for the biobased industry. Moreover, the answers from the survey give some insights concerning a potential “straw contract” between Lantmännen and the farmers. The report also highlights the aspects to be further researched.More information concerning the Swedish contribution to the AGROinLOG project can be found in the public report AGROinLOG (2020a).
  •  
5.
  • Gómez, M., et al. (författare)
  • From agroindustries to integrated biomass logistics centres. Agroinlog project : Summary of final results
  • 2020
  • Ingår i: European Biomass Conference and Exhibition Proceedings. - : ETA-Florence Renewable Energies. ; , s. 941-952
  • Konferensbidrag (refereegranskat)abstract
    • AGROinLOG project has tested the integrated biomass logistics centres (IBLC) concept in three real agro-industries in Europe. The relevance of the IBLC strategy relies on the fact that it allows agro-industries to create a new activity with lower investment, increasing incomes, stabilizing their annual activity (avoiding idle periods) and maintaining or creating new jobs. The demos’ studies were performed in Spain at a fodder industry, in Greece at an olive oil industry, and in Sweden inside a cereal processing industry. AGROinLOG validated these demos´ business models from a holistic perspective, also studying the replicability of the IBLC business model in other agro-industries from different sectors (vegetable oil extraction, olive oil chain, feed & fodder, wine, grain chain and sugar industry). Sectorial analysis was carried out as well, allowing the identification of opportunities among the targeted sector to replicate the IBLC concept, drawing barriers to overcome in each case. Thus, technical, economic and environmental feasibility of integrated biomass logistics centers (IBLCs) for food and non-food products have been assessed in detail. 
  •  
6.
  • Gunnarsson, Carina, et al. (författare)
  • Sustainable straw potential in Sweden – a case study to supply straw for ethanol production
  • 2020
  • Ingår i: European Biomass Conference and Exhibition Proceedings2020, Pages 86-8828th European Biomass Conference and Exhibition, e-EUBCE 2020; Virtual, Online; ; 6 July 2020 through 9 July 2020. - : ETA-Florence Renewable Energies. ; , s. 86-88
  • Konferensbidrag (refereegranskat)abstract
    • When agriculture is to supply a growing bioeconomy with biomass, straw has been identified as one of residues with the largest potential. As removal of straw from fields will have a negative impact on soil humus development compared with straw incorporation it is important to make sure that a system including straw removal does not negatively effect the long-term soil fertility. As part of the EU-financed project AGROinLOG a Swedish demonstration case was made to supply 80,000 tonnes of winter wheat straw annually to 2nd generation bioethanol production. The straw removal from the case study area of Norrköping and surrounding counties, in the south-eastern part of Sweden, was evaluated from a soil fertility aspect using a model that estimates the sustainability of a cropping system regarding soil fertility and yield levels based on humus content, climate and soil type. The assessment revealed the possibility to remove 230,000 tonnes of winter wheat straw from the surrounding counties of Norrköping without reaching the humus limit. The margin to 80,000 tonnes is large and collecting this amount of winter wheat straw annually may well be possible. 
  •  
7.
  • Suardi, Allessandro, et al. (författare)
  • Admixing chaff with straw increased the residues collected without compromising machinery efficiencies
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The collection of residues from staple crop may contribute to meet EU regulations in renewable energy production without harming soil quality. At a global scale, chaff may have great potential to be used as a bioenergy source. However, chaff is not usually collected, and its loss can consist of up to one-fifth of the residual biomass harvestable. In the present work, a spreader able to manage the chaff (either spreading [SPR] on the soil aside to the straw swath or admixed [ADM] with the straw) at varying threshing conditions (with either 1 or 2 threshing rotors [1R and 2R, respectively] in the combine, which affects the mean length of the straw pieces). The fractions of the biomass available in field (grain, chaff, straw, and stubble) were measured, along with the performances of both grain harvesting and baling operations. Admixing chaff allowed for a slightly higher amount of straw fresh weight baled compared to SPR (+336 kg straw ha−1), but such result was not evident on a dry weight basis. At the one time, admixing chaff reduced the material capacity of the combine by 12.9%. Using 2R compared to 1R strongly reduced the length of the straw pieces, and increased the bale unit weight; however, it reduced the field efficiency of the grain harvesting operations by 11.9%. On average, the straw loss did not vary by the treatments applied and was 44% of the total residues available (computed excluding the stubble). In conclusion, admixing of chaff with straw is an option to increase the residues collected without compromising grain harvesting and straw baling efficiencies; in addition, it can reduce the energy needs for the bale logistics. According to the present data, improving the chaff collection can allow halving the loss of residues. However, further studies are needed to optimise both the chaff and the straw recoveries. © 2020 by the authors.
  •  
8.
  • Lund, Johanna, et al. (författare)
  • Unutilized Silage as a Biogas Substrate
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • Large amounts of unutilized silage are available in agriculture as well as from municipalities harvesting meadows and grasslands.At the same time, biogas plants with crop-based substrates are looking for alternative substrates to adapt to EU RED and toincrease profitability. Unutilized silage that would not otherwise be used for feed can be an excellent biogas substrate, but thematerial is often coarse and pretreatment is necessary. This project was performed as a case study to substitute 20% of the cropbasedsubstrate used today (maize, whole-crop silage and grain) with unutilized silage bales for the Jordberga biogas plant inthe south of Sweden.Three different mobile machines for disintegration of silage bales were used in practical trials to evaluate which was most effectiveat reducing particle length and damaging the structure of the grass for improved digestion. Two of the machines used ahammermill technique for disintegration and the third used knife rotors. Test results were evaluated regarding particle length,particle structure, energy consumption and capacity. Costs were calculated for the handling system of the bales from the farm orstorage site to the processing unit for disintegration and then to the digester.All three machines managed, to different extent, to reduce particle length and damage the structure of the grass. For a goodestimation of the capacity and fuel consumption further tests are needed. The purchase of bales and transport to the plant arethe largest costs in the system. It is therefore crucial for the interest of the biogas plants to use bales if they can have themdelivered for free at the gate. If and how much the biogas plant is prepared to pay for the bales is also highly dependent on howthe silage quality affects the methane yield potential.
  •  
9.
  • Pari, Luigi, et al. (författare)
  • Combined harvesting of chaff and straw for bioethanol production : The first experience on wheat in Sweden
  • 2018
  • Ingår i: European Biomass Conf. Exhib. Proc.. ; , s. 289-293
  • Konferensbidrag (refereegranskat)abstract
    • The purpose of this work is the evaluation of a harvest chain aimed at incorporating the chaff into the straw bales as consequence of wheat harvest operation. The test was performed in August 2017 in Uppsala, Sweden, using a commercial hybrid combine harvester equipped with a modified chaff spreader and a tractor with round baler. In particular, the chaff spreader was used as chaff recovery system to redirect the chaff into the straw flow during its fall on the ground and get the product admixed in the straw swath. The combine was also used with the recovery systems in “spreading mode” to be experimented as control. A few companies are approaching this engineering challenge, however, as the market of agricultural residues for fuel production is growing, simple and affordable solutions should be identified and commercialized. This paper can be considered as a primary attempt to find a simplified and affordable solution in this direction. The results show different harvesting performances according to machine settings. Indeed, when the recovery system was used, the material falling into the swath and baled was about 340 kg (14%) higher per ha (dry basis). However, respect the amount of biomass potentially available for baling, high harvest losses were identified and indicated the need to repeat the test with other machineries and find further adjustments.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy