SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0002 9297 ;hsvcat:1"

Sökning: L773:0002 9297 > Naturvetenskap

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • George, Sophia H.L., et al. (författare)
  • Increasing diversity of functional genetics studies to advance biological discovery and human health
  • 2023
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297 .- 1537-6605. ; 110:12, s. 1996-2002
  • Forskningsöversikt (refereegranskat)abstract
    • In this perspective we discuss the current lack of genetic and environmental diversity in functional genomics datasets. There is a well-described Eurocentric bias in genetic and functional genomic research that has a clear impact on the benefit this research can bring to underrepresented populations. Current research focused on genetic variant-to-function experiments aims to identify molecular QTLs, but the lack of data from genetically diverse individuals has limited analyses to mostly populations of European ancestry. Although some efforts have been established to increase diversity in functional genomic studies, much remains to be done to consistently generate data for underrepresented populations from now on. We discuss the major barriers for this continuity and suggest actionable insights, aiming to empower research and researchers from underserved populations.
  •  
2.
  • Bruder, Carl E G, et al. (författare)
  • Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles
  • 2008
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 82:3, s. 763-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The exploration of copy-number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic makeup between twins derived from the same zygote represent an irrefutable example of somatic mosaicism. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype by using two platforms for genome-wide CNV analyses and showed that CNVs exist within pairs in both groups. These findings have an impact on our views of genotypic and phenotypic diversity in monozygotic twins and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool for identifying disease-predisposition loci. Our results also imply that caution should be exercised when interpreting disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics.
  •  
3.
  • Bjursell, Magnus K., et al. (författare)
  • Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 89:4, s. 507-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (Ado Met), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Lewis, Cathryn M, et al. (författare)
  • Genome scan meta-analysis of schizophrenia and bipolar disorder, part II : Schizophrenia
  • 2003
  • Ingår i: American Journal of Human Genetics. - 0002-9297 .- 1537-6605. ; 73:1, s. 34-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.
  •  
8.
  •  
9.
  •  
10.
  • Manousaki, D., et al. (författare)
  • Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis
  • 2017
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 101:2, s. 227-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 x 10(-88)). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78-2.78, p = 1.26 3 10 x(-12)). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19-1.64, p = 2.63 3 10 x(-5)) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy