SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0004 6256 OR L773:1538 3881 ;pers:(Henning Thomas)"

Sökning: L773:0004 6256 OR L773:1538 3881 > Henning Thomas

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsubai, Khalid, et al. (författare)
  • Qatar Exoplanet Survey : Qatar-3b, Qatar-4b, and Qatar-5b
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey. The three planets belong to the hot Jupiter family, with orbital periods of P-Q3b = 2.50792 days, P-Q4b = 1.80539 days, and P-Q5b = 2.87923 days. Follow-up spectroscopic observations reveal the masses of the planets to be M-Q3b = 4.31 +/- 0.47 M-J, M-Q4b = 6.10 +/- 0.54 M-J, and M-Q5b = 4.32 +/- 0.18 M-J, while model fits to the transit light curves yield radii of R-Q3b = 1.096 +/- 0.14 RJ, R-Q4b = 1.135 +/- 0.11 R-J, and R-Q5b = 1.107 +/- 0.064 R-J. The host stars are low-mass main sequence stars with masses and radii M-Q3 = 1.145 +/- 0.064 M circle dot, M-Q4 = 0.896 +/- 0.048 M circle dot, M-Q5 = 1.128 +/- 0.056 M circle dot and R-Q3 = 1.272 +/- 0.14 R circle dot, R-Q4 = 0.849 +/- 0.063 R circle dot, and R-Q5 = 1.076 +/- 0.051 R circle dot for Qatar-3, 4, and 5 respectively. The V magnitudes of the three host stars are V-Q3 = 12.88, V-Q4 = 13.60, and V-Q5 = 12.82. All three new planets can be classified as heavy hot Jupiters (M > 4 M-J).
  •  
2.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
3.
  • Lawson, Kellen, et al. (författare)
  • SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new, near-infrared (1.1-2.4 mu m) high-contrast imaging of the debris disk around HD 15115 with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). The SCExAO/CHARIS resolves the disk down to rho similar to 02 (r(proj) similar to 10 au), a factor of similar to 3-5 smaller than previous recent studies. We derive a disk position angle of PA similar to 2794-2805 and an inclination ofi similar to 853-86.2. While recent SPHERE/IRDIS imagery of the system could suggest a significantly misaligned two-ring disk geometry, CHARIS imagery does not reveal conclusive evidence for this hypothesis. Moreover, optimizing models of both one- and two-ring geometries using differential evolution, we find that a single ring having a Hong-like scattering phase function matches the data equally well within the CHARIS field of view (rho less than or similar to 1 ''). The disk's asymmetry, well evidenced at larger separations, is also recovered; the west side of the disk appears, on average, around 0.4 mag brighter across the CHARIS bandpass between 025 and 1 ''. Comparing Space Telescope Imaging Spectrograph (STIS) 50CCD optical photometry (2000-10500 A) with CHARIS near-infrared photometry, we find a red (STIS/50CCD-CHARIS broadband) color for both sides of the disk throughout the 04-1 '' region of overlap, in contrast to the blue color reported at similar wavelengths for regions exterior to similar to 2 ''. Further, this color may suggest a smaller minimum grain size than previously estimated at larger separations. Finally, we provide constraints on planetary companions and discuss possible mechanisms for the observed inner disk flux asymmetry and color.
  •  
4.
  • Mayama, Satoshi, et al. (författare)
  • Subaru Near-infrared Imaging Polarimetry of Misaligned Disks around the SR 24 Hierarchical Triple System
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The SR 24 multistar system hosts both circumprimary and circumsecondary disks, which are strongly misaligned with each other. The circumsecondary disk is circumbinary in nature. Interestingly, both disks are interacting, and they possibly rotate in opposite directions. To investigate the nature of this unique twin disk system, we present 01 resolution near-infrared polarized intensity images of the circumstellar structures around SR 24, obtained with HiCIAO mounted on the Subaru 8.2 m telescope. Both the circumprimary disk and the circumsecondary disk are resolved and have elongated features. While the position angle of the major axis and radius of the near-IR (NIR) polarization disk around SR 24S are 55° and 137 au, respectively, those around SR 24N are 110° and 34 au, respectively. With regard to overall morphology, the circumprimary disk around SR 24S shows strong asymmetry, whereas the circumsecondary disk around SR 24N shows relatively strong symmetry. Our NIR observations confirm the previous claim that the circumprimary and circumsecondary disks are misaligned from each other. Both the circumprimary and circumsecondary disks show similar structures in 12CO observations in terms of its size and elongation direction. This consistency is because both NIR and 12CO are tracing surface layers of the flared disks. As the radius of the polarization disk around SR 24N is roughly consistent with the size of the outer Roche lobe, it is natural to interpret the polarization disk around SR 24N as a circumbinary disk surrounding the SR 24Nb–Nc system.
  •  
5.
  • Southworth, John, et al. (författare)
  • Detection of the Atmosphere of the 1.6 M-circle plus Exoplanet GJ 1132 b
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Detecting the atmospheres of low-mass, low-temperature exoplanets is a high-priority goal on the path to ultimately detecting biosignatures in the atmospheres of habitable exoplanets. High-precision HST observations of several super-Earths with equilibrium temperatures below 1000 K have to date all resulted in featureless transmission spectra, which have been suggested to be due to high-altitude clouds. We report the detection of an atmospheric feature in the atmosphere of a 1.6 M-circle plus transiting exoplanet, GJ 1132 b, with an equilibrium temperature of similar to 600 K and orbiting a nearby M dwarf. We present observations of nine transits of the planet obtained simultaneously in the griz and JHK passbands. We find an average radius of 1.43 +/- 0.16 R-circle plus for the planet, averaged over all the passbands, and a radius of 0.255 +/- 0.023 R-circle dot for the star, both of which are significantly greater than previously found. The planet radius can be decomposed into a surface radius at similar to 1.375 R-circle plus overlaid by atmospheric features that increase the observed radius in the z and K bands. The z-band radius is 4 sigma higher than the continuum, suggesting a strong detection of an atmosphere. We deploy a suite of tests to verify the reliability of the transmission spectrum, which are greatly helped by the existence of repeat observations. The large z-band transit depth indicates strong opacity from H2O and/or CH4 or a hitherto-unconsidered opacity. A surface radius of 1.375 +/- 0.16 R-circle plus allows for a wide range of interior compositions ranging from a nearly Earth-like rocky interior, with similar to 70% silicate and similar to 30% Fe, to a substantially H2O-rich water world.
  •  
6.
  • Uyama, Taichi, et al. (författare)
  • Direct Imaging Explorations for Companions around Mid-Late M Stars from the Subaru/IRD Strategic Program
  • 2023
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 165:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Subaru telescope is currently performing a strategic program (SSP) using the high-precision near-infrared (NIR) spectrometer IRD to search for exoplanets around nearby mid/late M dwarfs via radial velocity (RV) monitoring. As part of the observing strategy for the exoplanet survey, signatures of massive companions such as RV trends are used to reduce the priority of those stars. However, this RV information remains useful for studying the stellar multiplicity of nearby M dwarfs. To search for companions around such "deprioritized" M dwarfs, we observed 14 IRD-SSP targets using Keck/NIRC2 with pyramid wave-front sensing at NIR wavelengths, leading to high sensitivity to substellar-mass companions within a few arcseconds. We detected two new companions (LSPM J1002+1459 B and LSPM J2204+1505 B) and two new candidates that are likely companions (LSPM J0825+6902 B and LSPM J1645+0444 B), as well as one known companion. Including two known companions resolved by the IRD fiber injection module camera, we detected seven (four new) companions at projected separations between ∼2 and 20 au in total. A comparison of the colors with the spectral library suggests that LSPM J2204+1505 B and LSPM J0825+6902 B are located at the boundary between late M and early L spectral types. Our deep high-contrast imaging for targets where no bright companions were resolved did not reveal any additional companion candidates. The NIRC2 detection limits could constrain potential substellar-mass companions (∼10–75 MJup) at 10 au or further. The failure with Keck/NIRC2 around the IRD-SSP stars having significant RV trends makes these objects promising targets for further RV monitoring or deeper imaging with the James Webb Space Telescope to search for smaller-mass companions below the NIRC2 detection limits.
  •  
7.
  • Akiyama, Eiji, et al. (författare)
  • SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkH alpha 330 DISK
  • 2016
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
  •  
8.
  • Rich, Evan A., et al. (författare)
  • NEAR-IR POLARIZED SCATTERED LIGHT IMAGERY OF THE DoAr 28 TRANSITIONAL DISK
  • 2015
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 150:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0.10 (13 AU) out to 0.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 M-circle dot disk that has a partially depleted inner gap from the dust sublimation radius out to similar to 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.
  •  
9.
  • Yang, Yi, et al. (författare)
  • NEAR-INFRARED IMAGING POLARIMETRY OF INNER REGION OF GG TAU A DISK
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:1
  • Tidskriftsartikel (refereegranskat)abstract
    • By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the H band, with a spatial resolution of approximately 0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to < 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H-2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies, the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation. 100 au) young binary systems.
  •  
10.
  • Hobson, Melissa J., et al. (författare)
  • TOI-199 b : A Well-characterized 100 day Transiting Warm Giant Planet with TTVs Seen from Antarctica
  • 2023
  • Ingår i: Astronomical Journal. - 0004-6256. ; 166:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the spectroscopic confirmation and precise mass measurement of the warm giant planet TOI-199 b. This planet was first identified in TESS photometry and confirmed using ground-based photometry from ASTEP in Antarctica including a full 6.5 hr long transit, PEST, Hazelwood, and LCO; space photometry from NEOSSat; and radial velocities (RVs) from FEROS, HARPS, CORALIE, and CHIRON. Orbiting a late G-type star, TOI-199 b has a 104.854 − 0.002 + 0.001 day period, a mass of 0.17 ± 0.02 M J, and a radius of 0.810 ± 0.005 R J. It is the first warm exo-Saturn with a precisely determined mass and radius. The TESS and ASTEP transits show strong transit timing variations (TTVs), pointing to the existence of a second planet in the system. The joint analysis of the RVs and TTVs provides a unique solution for the nontransiting companion TOI-199 c, which has a period of 273.69 − 0.22 + 0.26 days and an estimated mass of 0.28 − 0.01 + 0.02 M J . This period places it within the conservative habitable zone.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy