SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2020-2021);srt2:(2020)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2020-2021) > (2020)

  • Resultat 1-10 av 23
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Merino, Jordi, et al. (författare)
  • Interaction Between Type 2 Diabetes Prevention Strategies and Genetic Determinants of Coronary Artery Disease on Cardiometabolic Risk Factors
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X .- 0012-1797. ; 69:1, s. 112-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronary artery disease (CAD) is more frequent among individuals with dysglycemia. Preventive interventions for diabetes can improve cardiometabolic risk factors (CRFs), but it is unclear whether the benefits on CRFs are similar for individuals at different genetic risk for CAD. We built a 201-variant polygenic risk score (PRS) for CAD and tested for interaction with diabetes prevention strategies on 1-year changes in CRFs in 2,658 Diabetes Prevention Program (DPP) participants. We also examined whether separate lifestyle behaviors interact with PRS and affect changes in CRFs in each intervention group. Participants in both the lifestyle and metformin interventions had greater improvement in the majority of recognized CRFs compared with placebo (P < 0.001) irrespective of CAD genetic risk (Pinteraction > 0.05). We detected nominal significant interactions between PRS and dietary quality and physical activity on 1-year change in BMI, fasting glucose, triglycerides, and HDL cholesterol in individuals randomized to metformin or placebo, but none of them achieved the multiple-testing correction for significance. This study confirms that diabetes preventive interventions improve CRFs regardless of CAD genetic risk and delivers hypothesis-generating data on the varying benefit of increasing physical activity and improving diet on intermediate cardiovascular risk factors depending on individual CAD genetic risk profile.
  •  
2.
  • Nilsen, M. S., et al. (författare)
  • 3-Hydroxyisobutyrate, A Strong Marker of Insulin Resistance in Type 2 Diabetes and Obesity That Modulates White and Brown Adipocyte Metabolism
  • 2020
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 69:9, s. 1903-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating branched-chain amino acids (BCAAs) associate with insulin resistance and type 2 diabetes. 3-Hydroxyisobutyrate (3-HIB) is a catabolic intermediate of the BCAA valine. In this study, we show that in a cohort of 4,942 men and women, circulating 3-HIB is elevated according to levels of hyperglycemia and established type 2 diabetes. In complementary cohorts with measures of insulin resistance, we found positive correlates for circulating 3-HIB concentrations with HOMA2 of insulin resistance, as well as a transient increase in 3-HIB followed by a marked decrease after bariatric surgery and weight loss. During differentiation, both white and brown adipocytes upregulate BCAA utilization and release increasing amounts of 3-HIB. Knockdown of the 3-HIB-forming enzyme 3-hydroxyisobutyryl-CoA hydrolase decreases release of 3-HIB and lipid accumulation in both cell types. Conversely, addition of 3-HIB to white and brown adipocyte cultures increases fatty acid uptake and modulated insulin-stimulated glucose uptake in a time-dependent manner. Finally, 3-HIB treatment decreases mitochondrial oxygen consumption and generation of reactive oxygen species in white adipocytes, while increasing these measures in brown adipocytes. Our data establish 3-HIB as a novel adipocyte-derived regulator of adipocyte subtype-specific functions strongly linked to obesity, insulin resistance, and type 2 diabetes.
  •  
3.
  • Yaghootkar, Hanieh, et al. (författare)
  • Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity
  • 2020
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 69:12, s. 2806-2818
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 x 10(-16), n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
  •  
4.
  • Yuan, Shuai, et al. (författare)
  • Is Type 2 Diabetes Causally Associated With Cancer Risk? : Evidence From a Two-Sample Mendelian Randomization Study
  • 2020
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 69:7, s. 1588-1596
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a two-sample Mendelian randomization study to investigate the causal associations of type 2 diabetes mellitus (T2DM) with risk of overall cancer and 22 site-specific cancers. Summary-level data for cancer were extracted from the Breast Cancer Association Consortium and UK Biobank. Genetic predisposition to T2DM was associated with higher odds of pancreatic, kidney, uterine, and cervical cancer and lower odds of esophageal cancer and melanoma but not associated with 16 other site-specific cancers or overall cancer. The odds ratios (ORs) were 1.13 (95% CI 1.04, 1.22), 1.08 (1.00, 1.17), 1.08 (1.01, 1.15), 1.07 (1.01, 1.15), 0.89 (0.81, 0.98), and 0.93 (0.89, 0.97) for pancreatic, kidney, uterine, cervical, and esophageal cancer and melanoma, respectively. The association between T2DM and pancreatic cancer was also observed in a meta-analysis of this and a previous Mendelian randomization study (OR 1.08; 95% CI 1.02, 1.14;P= 0.009). There was limited evidence supporting causal associations between fasting glucose and cancer. Genetically predicted fasting insulin levels were positively associated with cancers of the uterus, kidney, pancreas, and lung. The current study found causal detrimental effects of T2DM on several cancers. We suggest reinforcing the cancer screening in T2DM patients to enable the early detection of cancer.
  •  
5.
  • Zhao, Lue Ping, et al. (författare)
  • Motifs of Three HLA-DQ Amino Acid Residues (alpha 44, beta 57, beta 135) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children
  • 2020
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 69:7, s. 1573-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next-generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1- to 18 year-old patients (n= 962) and control subjects (n= 636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically organized haplotype (HOH) association analysis allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues alpha 44Q (odds ratio [OR] 3.29,P= 2.38 * 10(-85)) and beta 57A (OR 3.44,P= 3.80 * 10(-84)) to be associated with T1D in the DQ8/9 cluster representing all ten residues (alpha 22, alpha 23, alpha 44, alpha 49, alpha 51, alpha 53, alpha 54, alpha 73, alpha 184, beta 57) due to complete linkage disequilibrium (LD) of alpha 44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found alpha 44C and beta 135D to share the risk for T1D (OR 2.10,P= 1.96 * 10(-20)). The motif "QAD" of alpha 44, beta 57, and beta 135 captured the T1D risk association of DQ8.1 (OR 3.44,P= 3.80 * 10(-84)), and the corresponding motif "CAD" captured the risk association of DQ2.5 (OR 2.10,P= 1.96 * 10(-20)). Two risk associations were related to GAD65 autoantibody (GADA) and IA-2 autoantibody (IA-2A) but in opposite directions. CAD was positively associated with GADA (OR 1.56,P= 6.35 * 10(-8)) but negatively with IA-2A (OR 0.59,P= 6.55 * 10(-11)). QAD was negatively associated with GADA (OR 0.88;P= 3.70 * 10(-3)) but positively with IA-2A (OR 1.64;P= 2.40 * 10(-14)), despite a single difference at alpha 44. The residues are found in and around anchor pockets 1 and 9, as potential T-cell receptor contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AAs (alpha 44, beta 57, beta 135) conferring T1D risk should sharpen functional and translational studies.
  •  
6.
  • Zhao, Lue Ping, et al. (författare)
  • Next Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes
  • 2020
  • Ingår i: Diabetes. - Arlington, VA, United States : American Diabetes Association Inc.. - 1939-327X .- 0012-1797. ; 69:11, s. 2523-2535
  • Tidskriftsartikel (refereegranskat)abstract
    • HLA-DQA1 and -DQB1 genes have significant and potentially causal associations with autoimmune type 1 diabetes (T1D). To follow on the earlier analysis on high-risk HLA-DQ2.5 and DQ8.1, the current analysis uncovers seven residues (αa1, α157, α196, β9, β30, β57, β70) that are resistant to T1D among subjects with DQ4, 5, 6 and 7 resistant DQ haplotypes. These seven residues form 13 common motifs; six motifs are significantly resistant, six motifs have modest or no associations (p-values>0.05), and one motif has 7 copies observed among controls only. The motif "DAAFYDG", "DAAYHDG" and "DAAYYDR" have significant resistance to T1D (OR = 0.03, 0.25 and 0.18, p-value = 6.11*10-24, 3.54*10-15 and 1.03*10-21, respectively). Remarkably, a change of a single residue from the motif "DAAYH D G" to "DAAYH S G" (D to S at β57) alters the resistance potential, from resistant motif (OR = 0.15, p-value = 3.54*10-15) to a neutral motif (p-value = 0.183), the change of which was significant (Fisher's p-value = 0.0065). The extended set of linked residues associated with T1D resistance and unique to each cluster of HLA-DQ haplotypes represents facets of all known features and functions of these molecules: antigenic peptide binding, pMHCII complex stability, β167-169 RGD loop, TCR binding, formation of homodimer of alpha-beta heterodimers, and cholesterol binding in the cell membrane rafts. Identifications of these residues is a novel understanding of resistant DQ associations with T1D. Our analyses endow potential molecular approaches to identify immunological mechanisms that control disease susceptibility or resistance to provide novel targets for immunotherapeutic strategies.
  •  
7.
  • Ahlqvist, Emma, et al. (författare)
  • Subtypes of type 2 diabetes determined from clinical parameters
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 0012-1797. ; 69:10, s. 2086-2093
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is defined by a single metabolite, glucose, but is increasingly recognized as a highly heterogeneous disease, including individuals with varying clinical characteristics, disease progression, drug response, and risk of complications. Identification of subtypes with differing risk profiles and disease etiologies at diagnosis could open up avenues for personalized medicine and allow clinical resources to be focused to the patients who would be most likely to develop diabetic complications, thereby both im-proving patient health and reducing costs for the health sector. More homogeneous populations also offer increased power in experimental, genetic, and clinical studies. Clinical parameters are easily available and reflect relevant disease pathways, including the effects of both genetic and environmental exposures. We used six clinical parameters (GAD autoantibodies, age at diabetes onset, HbA1c, BMI, and measures of insulin resistance and insulin secretion) to cluster adult-onset diabetes patients into five subtypes. These sub-types have been robustly reproduced in several populations and associated with different risks of complications, comor-bidities, genetics, and response to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group had the highest risk for diabetic kidney disease (DKD) and fatty liver, empha-sizing the importance of insulin resistance for DKD and hepatosteatosis in T2D. In conclusion, we believe that sub-classification using these highly relevant parameters could provide a framework for personalized medicine in diabetes.
  •  
8.
  •  
9.
  • Buzzetti, Raffaella, et al. (författare)
  • Management of latent autoimmune diabetes in adults : A consensus statement from an international expert panel
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 0012-1797. ; 69:10, s. 2037-2047
  • Tidskriftsartikel (refereegranskat)abstract
    • A substantial proportion of patients with adult-onset diabetes share features of both type 1 diabetes (T1D) and type 2 diabetes (T2D). These individuals, at diagnosis, clinically resemble T2D patients by not requiring insulin treatment, yet they have immunogenetic markers associated with T1D. Such a slowly evolving form of autoimmune diabetes, described as latent autoimmune diabetes of adults (LADA), accounts for 2-12% of all patients with adult-onset diabetes, though they show considerable variability according to their demographics and mode of ascertainment. While therapeutic strategies aim for metabolic control and preservation of residual insulin secretory capacity, endotype heterogeneity within LADA implies a personalized approach to treatment. Faced with a paucity of large-scale clinical trials in LADA, an expert panel reviewed data and delineated one therapeutic approach. Building on the 2020 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) consensus for T2D and heterogeneity within autoimmune diabetes, we propose deviations for LADA from those guidelines. Within LADA, C-peptide values, proxy for b-cell function, drive therapeutic decisions. Three broad categories of random C-peptide levels were introduced by the panel: 1) C-peptide levels <0.3 nmol/L: A multiple-insulin regimen recommended as for T1D; 2) C-peptide values >0.3 and <0.7 nmol/L: Defined by the panel as a gray area in which a modified ADA/EASD algorithm for T2D is recommended; consider insulin in combination with other therapies to modulate β-cell failure and limit diabetic complications; 3) C-peptide values >0.7 nmol/L: Suggests a modified ADA/EASD algorithm as for T2D but allowing for the potentially progressive nature of LADA by monitoring C-peptide to adjust treatment. The panel concluded by advising general screening for LADA in newly diagnosed noninsulin-requiring diabetes and, importantly, that large randomized clinical trials are warranted.
  •  
10.
  • Elhadad, M. A., et al. (författare)
  • Deciphering the plasma proteome of type 2 diabetes
  • 2020
  • Ingår i: Diabetes. - 0012-1797. ; 69:12, s. 2766-2778
  • Tidskriftsartikel (refereegranskat)abstract
    • With an estimated prevalence of 463 million affected, type 2 diabetes represents a major challenge to health care systems worldwide. Analyzing the plasma proteomes of individuals with type 2 diabetes may illuminate hitherto unknown functional mechanisms underlying disease pathology. We assessed the associations between type 2 diabetes and >1,000 plasma proteins in the Cooperative Health Research in the Region of Augsburg (KORA) F4 cohort (n = 993, 110 cases), with subsequent replication in the third wave of the Nord-Trøndelag Health Study (HUNT3) cohort (n = 940, 149 cases). We computed logistic regression models adjusted for age, sex, BMI, smoking status, and hypertension. Addition-ally, we investigated associations with incident type 2 diabetes and performed two-sample bidirectional Mendelian randomization (MR) analysis to prioritize our results. Association analysis of prevalent type 2 diabetes revealed 24 replicated proteins, of which 8 are novel. Proteins showing association with incident type 2 diabetes were aminoacylase-1, growth hormone receptor, and insulin-like growth factor–binding protein 2. Aminoacylase-1 was associated with both prevalent and incident type 2 diabetes. MR analysis yielded nominally significant causal effects of type 2 diabetes on cathepsin Z and rennin, both known to have roles in the pathophysiological pathways of cardiovascular disease, and of sex hormone–binding globulin on type 2 diabetes. In conclusion, our high-throughput pro-teomics study replicated previously reported type 2 diabetes–protein associations and identified new candidate proteins possibly involved in the pathogenesis of type 2 diabetes. © 2020 by the American Diabetes Association.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
  • [1]23Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy