SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2000-2004);mspu:(article)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2000-2004) > Tidskriftsartikel

  • Resultat 1-10 av 122
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvidsson, E, et al. (författare)
  • Effects of different hypocaloric diets on protein secretion from adipose tissue of obese women
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 53:8, s. 1966-1971
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about common factors (e.g., macronutrients and energy supply) regulating the protein secretory function of adipose tissue. We therefore compared the effects of randomly assigned 10-week hypoenergetic (−600 kcal/day) diets with moderate-fat/moderate-carbohydrate or low-fat/high-carbohydrate content on circulating levels and production of proteins (using radioimmunoassays and enzyme-linked immunosorbent assays) from subcutaneous adipose tissue in 40 obese but otherwise healthy women. Similar results were obtained by the two diets. Body weight decreased by ∼7.5%. The secretion rate of leptin decreased by ∼40%, as did that of tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 and -8 decreased by 25–30%, whereas the secretion of plasminogen activator inhibitor 1 (PAI-1) and adiponectin did not show any changes. Regarding mRNA expression (by real-time PCR), only that of leptin and IL-6 decreased significantly. Circulating levels of leptin and PAI-1 decreased by 30 and 40%, respectively, but there were only minor changes in circulating TNF-α, IL-6, or adiponectin. In conclusion, moderate caloric restriction but not macronutrient composition influences the production and secretion of adipose tissue–derived proteins during weight reduction, leptin being the most sensitive and adiponectin and PAI-1 the least sensitive.
  •  
2.
  • Banfi, C, et al. (författare)
  • Transcriptional regulation of plasminogen activator inhibitor type 1 gene by insulin: insights into the signaling pathway
  • 2001
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 50:7, s. 1522-1530
  • Tidskriftsartikel (refereegranskat)abstract
    • Impairment of the fibrinolytic system, caused primarily by increases in the plasma levels of plasminogen activator inhibitor (PAI) type 1, are frequently found in diabetes and the insulin-resistance syndrome. Among the factors responsible for the increases of PAI-1, insulin has recently attracted attention. In this study, we analyzed the effects of insulin on PAI-1 biosynthesis in HepG2 cells, paying particular attention to the signaling network evoked by this hormone. Experiments performed in CHO cells overexpressing the insulin receptor indicate that insulin increases PAI-1 gene transcription through interaction with its receptor. By using inhibitors of the different signaling pathways evoked by insulin-receptor binding, it has been shown that the biosynthesis of PAI-1 is due to phosphatidylinositol (PI) 3-kinase activation, followed by protein kinase C and ultimately by mitogen-activated protein (MAP) kinase activation and extracellular signal–regulated kinase 2 phosphorylation. We also showed that this pathway is Ras-independent. Transfection of HepG2 cells with several truncations of the PAI-1 promoter coupled to a CAT gene allowed us to recognize two major response elements located in the regions between −804 and −708 and between −211 and −54. Electrophoretic mobility shift assay identified three binding sites for insulin-induced factors, all colocalized with putative Sp1 binding sites. Using supershifting antibodies, the binding of Sp1 could only be confirmed at the binding site located just upstream from the transcription start site of the PAI-1 promoter. A construct comprising four tandem repeat copies of the −93/−62 region of the PAI-1 promoter linked to CAT was transcriptionally activated in HepG2 cells by insulin. These results outline the central role of MAP kinase activation in the regulation of PAI-1 induced by insulin.
  •  
3.
  • Barg, Sebastian, et al. (författare)
  • A Subset of 50 Secretory Granules in Close Contact With L-Type Ca(2+) Channels Accounts for First-Phase Insulin Secretion in Mouse beta-Cells.
  • 2002
  • Ingår i: Diabetes. - 1939-327X .- 0012-1797. ; 51 Suppl 1, s. 74-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Capacitance measurements were applied to mouse pancreatic beta-cells to elucidate the cellular mechanisms underlying biphasic insulin secretion. We report here that only <50 of the beta-cell's >10,000 granules are immediately available for release. The releasable granules tightly associate with the voltage-gated alpha(1C) Ca(2+) channels, and it is proposed that the release of these granules accounts for first-phase insulin secretion. Subsequent replenishment of the releasable pool by priming of previously nonreleasable granules is required for second-phase insulin secretion. The latter reaction depends on intragranular acidification due to the concerted action of granular bafilomycin-sensitive v-type H(+)-ATPase and 4,4-diisothiocyanostilbene-2,2-disulfonate--blockable ClC-3 Cl(-) channels. Lowering the cytoplasmic ATP/ADP ratio prevents granule acidification, granule priming, and refilling of the releasable pool. The latter finding provides an explanation to the transient nature of insulin secretion elicited by, for example, high extracellular K(+) in the absence of metabolizable fuels.
  •  
4.
  • Barg, Sebastian, et al. (författare)
  • Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells
  • 2000
  • Ingår i: Diabetes. - 1939-327X .- 0012-1797. ; 49:9, s. 1500-1510
  • Tidskriftsartikel (refereegranskat)abstract
    • alpha-Cells were identified in preparations of dispersed mouse islets by immunofluorescence microscopy. A high fraction of alpha-cells correlated with a small cell size measured as the average cell diameter (10 microm) and whole-cell capacitance (<4 pF). The alpha-cells generated action potentials at a low frequency (1 Hz) in the absence of glucose. These action potentials were reversibly inhibited by elevation of the glucose concentration to 20 mmol/l. The action potentials originated from a membrane potential more negative than -50 mV, had a maximal upstroke velocity of 5 V/s, and peaked at +1 mV. Voltage-clamp experiments revealed the ionic conductances underlying the generation of action potentials. alpha-Cells are equipped with a delayed tetraethyl-ammonium-blockable outward current (activating at voltages above -20 mV), a large tetrodotoxin-sensitive Na+ current (above -30 mV; peak current 200 pA at +10 mV), and a small Ca2+ current (above -50 mV; peak current 30 pA at +10 mV). The latter flowed through omega-conotoxin GVIA (25%)- and nifedipine-sensitive (50%) Ca(2+)-channels. Mouse alpha-cells contained, on average, 7,300 granules, which undergo Ca(2+)-induced exocytosis when the alpha-cell is depolarized. Three functional subsets of granules were identified, and the size of the immediately releasable pool was estimated as 80 granules, or 1% of the total granule number. The maximal rate of exocytosis (1.5 pF/s) was observed 21 ms after the onset of the voltage-clamp depolarization, which is precisely the duration of Ca(2+)-influx during an action potential. Our results suggest that the secretory machinery of the alpha-cell is optimized for maximal efficiency in the use of Ca2+ for exocytosis.
  •  
5.
  • Barnes, BR, et al. (författare)
  • Isoform-specific regulation of 5' AMP-activated protein kinase in skeletal muscle from obese Zucker (fa/fa) rats in response to contraction
  • 2002
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 51:9, s. 2703-2708
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose transport can be activated in skeletal muscle in response to insulin via activation of phosphoinositide (PI) 3-kinase and in response to contractions or hypoxia, presumably via activation of 5′ AMP-activated protein kinase (AMPK). We determined the effects of insulin and muscle contraction/hypoxia on PI 3-kinase, AMPK, and glucose transport activity in epitrochlearis skeletal muscle from insulin-resistant Zucker (fa/ fa) rats. Insulin-stimulated glucose transport in isolated skeletal muscle was reduced 47% in obese versus lean rats, with a parallel 42% reduction in tyrosine-associated PI 3-kinase activity. Contraction and hypoxia elicited normal responses for glucose transport in skeletal muscle from insulin-resistant obese rats. Isoform-specific AMPK activity was measured in skeletal muscle in response to insulin, contraction, or hypoxia. Contraction increased AMPKα1 activity 2.3-fold in lean rats, whereas no effect was noted in obese rats. Hypoxia increased AMPKα1 activity to a similar extent (more than sixfold) in lean and obese rats. Regardless of genotype, contraction, and hypoxia, each increased AMPKα2 activity more than fivefold, whereas insulin did not alter either AMPKα1 or -α2 activity in skeletal muscle. In conclusion, obesity-related insulin resistance is associated with an isoform-specific impairment in AMPKα1 in response to contraction. However, this impairment does not appear to affect contraction-stimulated glucose transport. Activation of AMPKα2 in response to muscle contraction/ exercise is associated with a parallel and normal increase in glucose transport in insulin-resistant skeletal muscle.
  •  
6.
  • Bavenholm, PN, et al. (författare)
  • Fatty acid oxidation and the regulation of malonyl-CoA in human muscle
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:7, s. 1078-1083
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions concerning whether malonyl-CoA is regulated in human muscle and whether malonyl-CoA modulates fatty acid oxidation are still unanswered. To address these questions, whole-body fatty acid oxidation and the concentration of malonyl-CoA, citrate, and malate were determined in the vastus lateralis muscle of 16 healthy nonobese Swedish men during a sequential euglycemic-hyperinsulinemic clamp. Insulin was infused at rates of 0.25 and 1.0 mU x kg(-1) x min(-1), and glucose was infused at rates of 2.0 +/- 0.2 and 8.1 +/- 0.7 mg x kg(-1) x min(-1), respectively. During the low-dose insulin infusion, whole-body fatty acid oxidation, as determined by indirect calorimetry, decreased by 22% from a basal rate of 0.94 +/- 0.06 to 0.74 +/- 0.07 mg x kg(-1) x min(-1) (P = 0.005), but no increase in malonyl-CoA was observed. In contrast, during the high-dose insulin infusion, malonyl-CoA increased from 0.20 +/- 0.01 to 0.24 +/- 0.01 nmol/g (P &lt; 0.001), and whole-body fatty acid oxidation decreased by an additional 41% to 0.44 +/- 0.06 mg x kg(-1) x min(-1) (P &lt; 0.001). The increase in malonyl-CoA was associated with 30-50% increases in the concentrations of citrate (102 +/- 6 vs. 137 +/- 7 nmol/g, P &lt; 0.001), an allosteric activator of the rate-limiting enzyme in the malonyl-CoA formation, acetyl-CoA carboxylase, and malate (80 +/- 6 vs. 126 +/- 9 nmol/g, P = 0.002), an antiporter for citrate efflux from the mitochondria. Significant correlations were observed between the concentration of malonyl-CoA and both glucose utilization (r = 0.53, P = 0.002) and the sum of the concentrations of citrate and malate (r = 0.52, P &lt; 0.001), a proposed index of the cytosolic concentration of citrate. In addition, an inverse correlation between malonyl-CoA concentration and fatty acid oxidation was observed (r = -0.32, P = 0.03). The results indicate that an infusion of insulin and glucose at a high rate leads to increases in the concentration of malonyl-CoA in skeletal muscle and to decreases in whole-body and, presumably, muscle fatty acid oxidation. Furthermore, they suggest that the increase in malonyl-CoA in this situation is due, at least in part, to an increase in the cytosolic concentration of citrate. Because cytosolic citrate is also an inhibitor of phosphofructokinase, an attractive hypothesis is that changes in its concentration are part of an autoregulatory mechanism by which glucose modulates its own use and the use of fatty acids as fuels for skeletal muscle.
  •  
7.
  • Bavenholm, PN, et al. (författare)
  • Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance
  • 2001
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 50:6, s. 1449-1454
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperglycemia results from an imbalance between endocrine pancreatic function and hepatic and extrahepatic insulin sensitivity. We studied 57 well-matched Swedish men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or mild diabetes. Oral glucose tolerance and insulin release were assessed during an oral glucose tolerance test (OGTT). Insulin sensitivity and glucose turnover were determined during a two-step euglycemic insulin clamp (infusion 0.25 and 1.0 mU · kg–1 · min–1). High-performance liquid chromatography–purified [6-3H]glucose was used as a tracer. During low-insulin infusion, the rate of endogenous glucose production (EGP) decreased more in subjects with NGT than in subjects with IGT or diabetes (δ rate of appearance [Ra] 1.25 ± 0.10 vs. 0.75 ± 0.14 vs. 0.58 ± 0.09 mg · kg–1 · min–1, P &lt; 0.001). The corresponding rates of glucose infusion during the high-dose insulin infusion (M values) were 8.3 ± 0.6 vs. 5.4 ± 0.9 vs. 4.7 ± 0.4 mg · kg–1 · min–1 (P &lt; 0.001). A total of 56% of the variation in glucose area under the curve (AUC) during OGTT (glucose AUC) was mainly explained by δ Ra (increase in multiple R2 0.42) but also by δ Rd (rate of disapperance) (increase in multiple R2 0.05), and the early insulin response during OGTT contributed significantly (increase in multiple R2 0.07). When M value was included in the model, reflecting extrahepatic insulin sensitivity, it contributed to 20% of the variation in glucose AUC, and together with the incremental insulin response (increase in multiple R2 0.21), it explained 45% of the variation. In conclusion, insulin sensitivity of suppression of EGP plays the most important role in the determination of blood glucose response during OGTT.
  •  
8.
  • Bergman, Marie-Louise, et al. (författare)
  • Diabetes protection and restoration of thymocyte apoptosis in NOD Idd6 congenic strains
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 52:7, s. 1677-1682
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes in the nonobese diabetic (NOD) mouse is a multifactorial and polygenic disease. The NOD-derived genetic factors that contribute to type 1 diabetes are named Idd (insulin-dependent diabetes) loci. To date, the biological functions of the majority of the Idd loci remain unknown. We have previously reported that resistance of NOD immature thymocytes to depletion by dexamethazone (Dxm) maps to the Idd6 locus. Herein, we refine this phenotype using a time-course experiment of apoptosis induction upon Dxm treatment. We confirm that the Idd6 region controls apoptosis resistance in immature thymocytes. Moreover, we establish reciprocal Idd6 congenic NOD and B6 strains to formally demonstrate that the Idd6 congenic region mediates restoration of the apoptosis resistance phenotype. Analysis of the Idd6 congenic strains indicates that a 3-cM chromosomal region located within the distal part of the Idd6 region controls apoptosis resistance in NOD immature thymocytes. Together, these data support the hypothesis that resistance to Dxm-induced apoptosis in NOD immature thymocytes is controlled by a genetic factor within the region that also contributes to type 1 diabetes pathogenesis. We propose that the diabetogenic effect of the Idd6 locus is exerted at the level of the thymic selection process.
  •  
9.
  • Bjorklund, A., et al. (författare)
  • Glucose-induced Ca2+ (i) abnormalities in human pancreatic islets - Important role of overstimulation
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:11, s. 1840-1848
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic hyperglycemia desensitizes beta -cells to glucose. To further define the mechanisms behind desensitization and the role of overstimulation, we tested human pancreatic islets for the effects of long-term elevated glucose levels on cytoplasmic free Ca2+ concentration ([Ca2+](i)) and its relationship to overstimulation. Islets were cultured for 48 h with 5.5 or 27 mmol/l glucose. Culture with 27 mmol/l glucose obliterated postculture insulin responses to 27 mmol/l glucose. This desensitization was specific for glucose versus arginine, Desensitization was accompanied by three major [Ca2+](i) abnormalities: 1) elevated basal [Ca2+](i),) loss of a glucose-induced rise in [Ca2+](i) and 3) perturbations of oscillatory activity with a decrease in glucose-induced slow oscillations (0.2-0.5 min(-1)). Coculture with 0.3 mmol/l diazoxide was performed to probe the role of overstimulation. Neither glucose nor diazoxide affected islet glucose utilization or oxidation, Coculture with diazoxide and 27 mmol/l glucose significantly (P < 0.05) restored postculture insulin responses to glucose and lowered basal [Ca2+](i) and normalized glucose-induced oscillatory activity. However, diazoxide completely failed to revive an increase in [Ca2+](i) during postculture glucose stimulation. In conclusion, desensitization of glucose-induced insulin secretion in human pancreatic islets is induced in parallel with major glucose-specific [Ca2+](i) abnormalities. Overstimulation is an important but not exclusive factor behind [Ca2+](i) abnormalities.
  •  
10.
  • Bolinder, J, et al. (författare)
  • Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:5, s. 797-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal muscle and adipose tissue lipolysis rates were quantitatively compared in 12 healthy nonobese and 14 insulin-resistant obese subjects for 3.5 h after an oral glucose load using microdialysis measurements of interstitial glycerol concentrations and determinations of local blood flow with 133Xe clearance in the gastrocnemius muscle and in abdominal subcutaneous adipose tissue. Together with measurements of arterialized venous plasma glycerol, the absolute rates of glycerol mobilization were estimated. In the basal state, skeletal muscle and adipose tissue glycerol levels were 50% higher (P &lt; 0.05-0.01) and adipose tissue blood flow (ATBF) and muscle blood flow (MBF) rates were 30-40% lower (P &lt; 0.02-0.05) in obese versus nonobese subjects. After glucose ingestion, adipose tissue glycerol levels were rapidly and transiently reduced, whereas in muscle, a progressive and less pronounced fall in glycerol levels was evident. MBF remained unchanged in both study groups, whereas ATBF increased more markedly (P &lt; 0.01) in the nonobese versus obese subjects after the oral glucose load. The fasting rates of glycerol release per unit of tissue weight from skeletal muscle were between 20 and 25% of that from adipose tissue in both groups. After glucose ingestion, the rates of glycerol release from skeletal muscle and from adipose tissue were almost identical in nonobese and obese subjects. However, the kinetic patterns differed markedly between tissues; in adipose tissue, the rate of glycerol mobilization was suppressed by 25-30% (P &lt; 0.05) after glucose ingestion, whereas no significant reduction was registered in skeletal muscle. We conclude that significant amounts of glycerol are released from skeletal muscle, which suggests that muscle lipolysis provides an important endogenous energy source in humans. In response to glucose ingestion, the regulation of skeletal muscle glycerol release differs from that in adipose tissue; although the rate of glycerol release from adipose tissue is clearly suppressed, the rate of glycerol mobilization from skeletal muscle remains unaltered. In quantitative terms, the rate of glycerol release per unit of tissue weight in adipose tissue and in skeletal muscle is similar in nonobese and obese subjects in both the postabsorptive state and after glucose ingestion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 122

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy