SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2005-2009);lar1:(umu)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2005-2009) > Umeå universitet

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edfalk, Sara, et al. (författare)
  • Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion.
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:9, s. 2280-7
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The G-protein-coupled receptor Gpr40 is expressed in beta-cells where it contributes to free fatty acid (FFA) enhancement of glucose-stimulated insulin secretion. However, other sites of Gpr40 expression, including the intestine, have been suggested. The transcription factor IPF1/PDX1 was recently shown to bind to an enhancer element within the 5'-flanking region of Gpr40, implying that IPF1/PDX1 might regulate Gpr40 expression. Here, we addressed whether 1) Gpr40 is expressed in the intestine and 2) Ipf1/Pdx1 function is required for Gpr40 expression. RESEARCH DESIGN AND METHODS: In the present study, Gpr40 expression was monitored by X-gal staining using Gpr40 reporter mice and by in situ hybridization. Ipf1/Pdx1-null and beta-cell specific mutants were used to investigate whether Ipf1/Pdx1 controls Gpr40 expression. Plasma insulin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and glucose levels in response to acute oral fat diet were determined in Gpr40 mutant and control mice. RESULTS: Here, we show that Gpr40 is expressed in endocrine cells of the gastrointestinal tract, including cells expressing the incretin hormones GLP-1 and GIP, and that Gpr40 mediates FFA-stimulated incretin secretion. We also show that Ipf1/Pdx1 is required for expression of Gpr40 in beta-cells and endocrine cells of the anterior gastrointestinal tract. CONCLUSIONS: Together, our data provide evidence that Gpr40 modulates FFA-stimulated insulin secretion from beta-cells not only directly but also indirectly via regulation of incretin secretion. Moreover, our data suggest a conserved role for Ipf1/Pdx1 and Gpr40 in FFA-mediated secretion of hormones that regulate glucose and overall energy homeostasis.
  •  
2.
  • Einarsdottir, Elisabet, et al. (författare)
  • Linkage but not association of calpain-10 to type 2 diabetes replicated in northern Sweden
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:6, s. 1879-1883
  • Tidskriftsartikel (refereegranskat)abstract
    • We present data from a genome-wide scan identifying genetic factors conferring susceptibility to type 2 diabetes. The linkage analysis was based on 59 families from northern Sweden, consisting of a total of 129 cases of type 2 diabetes and 19 individuals with impaired glucose tolerance. Model-free linkage analysis revealed a maximum multipoint logarithm of odds score of 3.19 for D2S2987 at 267.7 cM (P = 0.00058), suggesting that a gene conferring susceptibility to type 2 diabetes in the northern Swedish population resides in the 2q37 region. These data replicate, in a European population, previously identified linkage of marker loci in this region to type 2 diabetes in Mexican Americans. In contrast, no evidence in support of association to the previously identified single nucleotide polymorphisms in the calpain-10 gene was observed in a case-control cohort derived from the same population.
  •  
3.
  • Florez, Jose C, et al. (författare)
  • Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:2, s. 531-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The common polymorphisms KCNJ11 E23K and ABCC8 A1369S have been consistently associated with type 2 diabetes. We examined whether these variants are also associated with progression from impaired glucose tolerance (IGT) to diabetes and responses to preventive interventions in the Diabetes Prevention Program. We genotyped both variants in 3,534 participants and performed Cox regression analysis using genotype, intervention, and their interactions as predictors of diabetes incidence over ∼3 years. We also assessed the effect of genotype on insulin secretion and insulin sensitivity at 1 year. As previously shown in other studies, lysine carriers at KCNJ11 E23K had reduced insulin secretion at baseline; however, they were less likely to develop diabetes than E/E homozygotes. Lysine carriers were less protected by 1-year metformin treatment than E/E homozygotes (P < 0.02). Results for ABCC8 A1369S were essentially identical to those for KCNJ11 E23K. We conclude that the lysine variant in KCNJ11 E23K leads to diminished insulin secretion in individuals with IGT. Given our contrasting results compared with case-control analyses, we hypothesize that its effect on diabetes risk may occur before the IGT-to-diabetes transition. We further hypothesize that the diabetes-preventive effect of metformin may interact with the impact of these variants on insulin regulation.
  •  
4.
  • Loos, Ruth J F, et al. (författare)
  • TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:7, s. 1943-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapidly accumulating evidence shows that common T-cell transcription factor (TCF)7L2 polymorphisms confer risk of type 2 diabetes through unknown mechanisms. We examined the association between four TCF7L2 single nucleotide polymorphisms (SNPs), including rs7903146, and measures of insulin sensitivity and insulin secretion in 1,697 Europid men and women of the population-based MRC (Medical Research Council)-Ely study. The T-(minor) allele of rs7903146 was strongly and positively associated with fasting proinsulin (P = 4.55 × 10−9) and 32,33 split proinsulin (P = 1.72 × 10−4) relative to total insulin levels; i.e., differences between T/T and C/C homozygotes amounted to 21.9 and 18.4% respectively. Notably, the insulin-to-glucose ratio (IGR) at 30-min oral glucose tolerance test (OGTT), a frequently used surrogate of first-phase insulin secretion, was not associated with the TCF7L2 SNP (P > 0.7). However, the insulin response (IGR) at 60-min OGTT was significantly lower in T-allele carriers (P = 3.5 × 10−3). The T-allele was also associated with higher A1C concentrations (P = 1.2 × 10−2) and reduced β-cell function, assessed by homeostasis model assessment of β-cell function (P = 2.8 × 10−2). Similar results were obtained for the other TCF7L2 SNPs. Of note, both major genes involved in proinsulin processing (PC1, PC2) contain TCF-binding sites in their promoters. Our findings suggest that the TCF7L2 risk allele may predispose to type 2 diabetes by impairing β-cell proinsulin processing. The risk allele increases proinsulin levels and diminishes the 60-min but not 30-min insulin response during OGTT. The strong association between the TCF7L2 risk allele and fasting proinsulin but not insulin levels is notable, as, in this unselected and largely normoglycemic population, external influences on β-cell stress are unlikely to be major factors influencing the efficiency of proinsulin processing.
  •  
5.
  • Lundholm, Marie, 1974-, et al. (författare)
  • Defective induction of CTLA-4 in the NOD mouse is controlled by the NOD allele of Idd3/IL-2 and a novel locus (Ctex) telomeric on chromosome 1
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:2, s. 538-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytotoxic T-lymphocyte–associated antigen-4 (CTLA-4), or CD152, is a negative regulator of T-cell activation and has been shown to be associated with autoimmune diseases. Previous work has demonstrated a defect in the expression of this molecule in nonobese diabetic (NOD) mice upon anti-CD3 stimulation in vitro. Using a genetic approach we here demonstrate that a novel locus (Ctex) telomeric on chromosome 1 together with the Idd3 (Il-2) gene confers optimal CTLA-4 expression upon CD3 activation of T-cells. Based on these data, we provide a model for how gene interaction between Idd3 (IL-2), Ctex, and Idd5.1 (Ctla-4) could confer susceptibility to autoimmune diabetes in the NOD mouse. Additionally, we showed that the Ctex and the Idd3 regions do not influence inducible T-cell costimulator (ICOS) protein expression in NOD mice. Instead, as previously shown, higher ICOS levels in NOD mice appear to be controlled by gene(s) in the Idd5.1 region, possibly a polymorphism in the Icos gene itself.
  •  
6.
  • Moore, Allan F, et al. (författare)
  • Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program
  • 2008
  • Ingår i: Diabetes. - Alexandria : American diabetes association. - 0012-1797 .- 1939-327X. ; 57:9, s. 2503-2510
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo.RESEARCH DESIGN AND METHODS: We genotyped selected single nucleotide polymorphisms (SNPs) in or near diabetes-associated loci, including EXT2, CDKAL1, CDKN2A/B, IGF2BP2, HHEX, LOC387761, and SLC30A8 in DPP participants and performed Cox regression analyses using genotype, intervention, and their interactions as predictors of diabetes incidence. We evaluated their effect on insulin resistance and secretion at 1 year.RESULTS: None of the selected SNPs were associated with increased diabetes incidence in this population. After adjustments for ethnicity, baseline insulin secretion was lower in subjects with the risk genotype at HHEX rs1111875 (P = 0.01); there were no significant differences in baseline insulin sensitivity. Both at baseline and at 1 year, subjects with the risk genotype at LOC387761 had paradoxically increased insulin secretion; adjustment for self-reported ethnicity abolished these differences. In ethnicity-adjusted analyses, we noted a nominal differential improvement in beta-cell function for carriers of the protective genotype at CDKN2A/B after 1 year of troglitazone treatment (P = 0.01) and possibly lifestyle modification (P = 0.05).CONCLUSIONS: We were unable to replicate the GWAS findings regarding diabetes risk in the DPP. We did observe genotype associations with differences in baseline insulin secretion at the HHEX locus and a possible pharmacogenetic interaction at CDKNA2/B.
  •  
7.
  • Möllsten, Anna, et al. (författare)
  • A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:1, s. 265-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress has been suggested to contribute to the development of diabetic nephropathy. Manganese superoxide dismutase (MnSOD) protects the cells from oxidative damage by scavenging free radicals. The demand for antioxidants is increased by smoking, which could disturb the balance between antioxidants and radicals. The present study aimed to determine whether a valine/alanine polymorphism in MnSOD (V16A, rs4880), alone or in combination with smoking, can contribute to development of diabetic nephropathy in 1,510 Finnish and Swedish patients with type 1 diabetes. Overt diabetic nephropathy (n = 619) was defined as having an albumin excretion rate (AER) >200 microg/min or renal replacement therapy; incipient diabetic nephropathy was defined as having an AER of 20-200 microg/min (n = 336). The control subjects had diabetes duration of >or=20 years, without albuminuria (AER <20 microg/min) and without antihypertensive treatment (n = 555). In addition to male sex and elevated A1C, smoking was significantly associated with diabetic nephropathy (overt plus incipient), odds ratio (OR) 2.00 (95% CI 1.60-2.50). When controlling for age at onset, diabetes duration, A1C, smoking, and sex, the Val/Val genotype was associated with an increase in risk of diabetic nephropathy (1.32 [1.00-1.74], P = 0.049). When evaluating the combined effect of genotype and smoking, we used logistic regression with stratification according to smoking status and genotype. The high-risk group (ever smoking plus Val/Val genotype) had 2.52 times increased risk of diabetic nephropathy (95% CI 1.73-3.69) compared with the low-risk group, but no departure from additivity was found. Our results indicate that smoking and homozygosity for the MnSOD Val allele is associated with an increased risk of diabetic nephropathy, which supports the hypothesis that oxidative stress contributes to the development of diabetic nephropathy.
  •  
8.
  • Papadopoulou, Stella, et al. (författare)
  • Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:10, s. 2844-2851
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal-epithelial interactions are pivotal for proper pancreatic growth and development. We have earlier shown that the fibroblast growth factor (FGF) receptor 2 is expressed in pancreatic progenitor cells and that FGF10, the high-affinity ligand of the FGF receptor 2 isoform FGF receptor 2b, promotes expansion of pancreatic progenitors. The Wnt family of ligands, which signal to the Frizzled (Frz) type receptors, have also been shown to mediate mesenchymal-epithelial interactions and cell proliferation in a variety of different systems. Here, we show that Frz3, like FGF receptor 2, is expressed in the pancreatic epithelium during the proliferative phase of the embryonic pancreas in mice and that overexpression of a dominant-negative form of mouse Frz8 in pancreatic progenitors severely perturbs pancreatic growth. Nevertheless, the transgenic mice remain normoglycemic and display normal glucose tolerance and glucose-stimulated insulin secretion when challenged with exogenous glucose. The maintenance of normoglycemia in these mice appears to be the consequence of a relative increase in endocrine cell number per pancreatic area combined with enhanced insulin biosynthesis and insulin secretion. Collectively, our data provide evidence that Wnt signaling is required for pancreatic growth but not adult beta-cell function.
  •  
9.
  • Stimson, Roland H, et al. (författare)
  • Cortisol release from adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 in humans
  • 2009
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 58:1, s. 46-53
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) regenerates cortisol from cortisone. 11beta-HSD1 mRNA and activity are increased in vitro in subcutaneous adipose tissue from obese patients. Inhibition of 11beta-HSD1 is a promising therapeutic approach in type 2 diabetes. However, release of cortisol by 11beta-HSD1 from adipose tissue and its effect on portal vein cortisol concentrations have not been quantified in vivo.RESEARCH DESIGN AND METHODS: Six healthy men underwent 9,11,12,12-[(2)H](4)-cortisol infusions with simultaneous sampling of arterialized and superficial epigastric vein blood sampling. Four men with stable chronic liver disease and a transjugular intrahepatic porto-systemic shunt in situ underwent tracer infusion with simultaneous sampling from the portal vein, hepatic vein, and an arterialized peripheral vein.RESULTS: Significant cortisol and 9,12,12-[(2)H](3)-cortisol release were observed from subcutaneous adipose tissue (15.0 [95% CI 0.4-29.5] and 8.7 [0.2-17.2] pmol . min(-1) . 100 g(-1) adipose tissue, respectively). Splanchnic release of cortisol and 9,12,12-[(2)H](3)-cortisol (13.5 [3.6-23.5] and 8.0 [2.6-13.5] nmol/min, respectively) was accounted for entirely by the liver; release of cortisol from visceral tissues into portal vein was not detected.CONCLUSIONS: Cortisol is released from subcutaneous adipose tissue by 11beta-HSD1 in humans, and increased enzyme expression in obesity is likely to increase local glucocorticoid signaling and contribute to whole-body cortisol regeneration. However, visceral adipose 11beta-HSD1 activity is insufficient to increase portal vein cortisol concentrations and hence to influence intrahepatic glucocorticoid signaling.
  •  
10.
  • van Harmelen, Vanessa, et al. (författare)
  • The vascular peptide endothelin-1 links fat accumulation with alterations of visceral adipocyte lipolysis
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 57:2, s. 378-386
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTAT-Visceral obesity increases risk of insulin resistance and type 2 diabetes. This may partly be due to a region-specific resistance to insulin's antilipolytic effect in visceral adipocytes. We investigated whether adipose tissue releases the vascular peptide endothelin-1 (ET-1) and whether ET-1 could account for regional differences in lipolysis. RESEARCH DESIGN AND METHODS-One group consisted of eleven obese and eleven nonobese subjects in whom ET-1 levels were compared between abdominal subcutaneous and arterialized blood samples. A second group included subjects undergoing anti-obesity surgery. Abdominal subcutaneous and visceral adipose tissues were obtained to study the effect of ET-1 on differentiated adipocytes regarding lipolysis and gene and protein expression. RESULTS-Adipose tissue had a marked net release of ET-1 in vivo, which was 2.5-fold increased in obesity. In adipocytes treated with ET-1, the antilipolytic effect of insulin was attenuated in Visceral but not in subcutaneous adipocytes, which could not be explained by effects of ET-1 on adipocyte differentiation. ET-1 decreased the expression of insulin receptor, insulin receptor substrate-1 and phosphodiesterase-3B and increased the expression of endothelin receptor-B (ETBR) in visceral but not in subcutaneous adipocytes. These effects were mediated via ETBR with signals through protein kinase C and calmodulin pathways. The effect of ET-1 could be mimicked by knockdown of IRS-1. CONCLUSIONS-ET-1 is released front human adipose tissue and links fat accumulation to insulin resistance. It selectively counteracts insulin inhibition of visceral adipocyte lipolysis via ETBR signaling pathways, which affect multiple steps in insulin signaling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy