SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2005-2009);pers:(Almgren Peter)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2005-2009) > Almgren Peter

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Florez, Jose C., et al. (författare)
  • The Kruppel-like factor 11 (KLF11) Q62R polymorphism is not associated with type 2 diabetes in 8,676 people
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:12, s. 3620-3624
  • Tidskriftsartikel (refereegranskat)abstract
    • Kruppel-like factor 11 is a pancreatic transcription factor whose activity induces the insulin gene. A common glutamine-to-arginine change at codon 62 (Q62R) in its gene KLF11 has been recently associated with type 2 diabetes in two independent samples. Q62R and two other rare missense variants (A347S and T220M) were also shown to affect the function of KLF11 in vitro, and insulin levels were lower in carriers of the minor allele at Q62R. We therefore examined their impact on common type 2 diabetes in several family-based and case-control samples of northern-European ancestry, totaling 8,676 individuals. We did not detect the rare A347S and T220M variants in our samples. With respect to Q62R, despite > 99% power to detect an association of the previously published magnitude, Q62R was not associated with type 2 diabetes (pooled odds ratio 0.97 [95% Cl 0.88-1.08], P = 0.63). In a subset of normoglycemic individuals, we did not observe significant differences in various insulin traits according to genotype at KLF11 Q62R. We conclude that the KLF11 A347S and T220M mutations do not contribute to increased risk of diabetes in European-derived populations and that the Q62R polymorphism has, at best, a minor effect on diabetes risk.
  •  
2.
  • Florez, JC, et al. (författare)
  • High-density haplotype structure and association testing of the insulin-degrading enzyme (IDE) gene with type 2 diabetes in 4,206 people
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:1, s. 128-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulin-degrading enzyme is responsible for the intracellular proteolysis of insulin. Its gene IDE is located on chromosome 10, in an area with suggestive linkage to type 2 diabetes and related phenotypes. Due to the impact of genetic variants of this gene in rodents and the function of its protein product, it has been proposed as a candidate gene for type 2 diabetes. Various groups have explored the role of the common genetic variation of IDE on insulin resistance and reported associations of various single nucleotide polymorphisms (SNPs) and haplotypes on both type 2 diabetes and glycemic traits. We sought to characterize the haplotype structure of IDE in detail and replicate the association of common variants with type 2 diabetes, fasting insulin, fasting glucose, and insulin resistance. We assessed linkage disequilibrium, selected single-marker and multimarker tags, and genotyped these markers in several case-control and family-based samples totalling 4,206 Caucasian individuals. We observed no statistically significant evidence of association between single-marker or multimarker tests in IDE and type 2 diabetes. Nominally significant differences in quantitative traits are consistent with statistical noise. We conclude that common genetic variation at, IDE is unlikely to confer clinically significant risk of type 2 diabetes in Caucasians.
  •  
3.
  • Holmkvist, Johan, et al. (författare)
  • Common variants in maturity-onset diabetes of the young genes and future risk of type 2 diabetes
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:6, s. 1738-1744
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Mutations in the hepatocyte nuclear factor (HNF)-1 alpha, HNF-4 alpha, glucokinase (GCK), and HNF-1 beta genes cause maturity-onset diabetes of the young (MODY), but it is not known whether common variants in these genes predict future type 2 diabetes. RESEARCH DESIGN AND METHODS-We tested 14 previously associated polymorphisms in HNF-1 alpha, HNF-4 alpha, GCK, and HNF-1 beta for association with type 2 diabetes-related traits and future risk of type 2 diabetes in 2,293 individuals from the Botnia study (Finland) and in 15,538 individuals from the Malmo Preventive Project (Sweden) with a total follow-up >360,000 years. RESULTS-The polymorphism rs1169288 in HNF-1 alpha strongly predicted future type 2 diabetes (hazard ratio [HR] 1.2, P = 0.0002). Also, SNPs rs4810424 and rs3212198 in HNF-4a nominally predicted future type 2 diabetes (HR 1.3 [95% CI 1.0-1.6], P = 0.03; and 1.1 [1.0-1.2], P = 0.04). The rs2144908 polymorphism in HNF-4 alpha was associated with elevated rate of hepatic glucose production during a hyperinsulinemic-euglycemic clamp (P = 0.03) but not with deterioration of insulin secretion over time. The SNP rs1799884 in the GCK promoter was associated with elevated fasting plasma glucose (fPG) concentrations that remained unchanged during the follow-up period (P = 0.4; SE 0.004 [-0.003-0.007]) but did not predict future type 2 diabetes (HR 0.9 [0.8 -1.0], P = 0.1). Polymorphisms in HNF-1 beta (transcription factor 2 [TCF2]) did not significantly influence insulin or glucose values nor did they predict future type 2 diabetes. CONCLUSIONS-In conclusion, genetic variation in both HNF-1 alpha and HNF-4 alpha predict future type 2 diabetes, whereas variation in the GCK promoter results in a sustained but subtle elevation of fPG that is not sufficient to increase risk for future type 2 diabetes.
  •  
4.
  • Lyon, Helen N., et al. (författare)
  • Common variants in the ENPP1 gene are not reproducibly associated with diabetes or obesity
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:11, s. 3180-3184
  • Tidskriftsartikel (refereegranskat)abstract
    • The common missense single nucleotide polymorphism (SNP) K121Q in the ectoenzyme nucleotide pyrophosphate phosphodiesterase (ENPP1) gene has recently been associated with type 2 diabetes in Italian, U.S., and South-Asian populations. A three-SNP haplotype, including K121Q, has also been associated with obesity and type 2 diabetes in French and Austrian populations. We set out to confirm these findings in several large samples. We genotyped the haplotype K121Q (rs1044498), rs1799774, and rs7754561 in 8,676 individuals of European ancestry with and without type 2 diabetes, in 1,900 obese and 930 lean individuals of European ancestry from the U.S. and Poland, and in 1,101 African-American individuals. Neither the K121Q missense polymorphism nor the putative risk haplotype were significantly associated with type 2 diabetes or BMI. Two SNPs showed suggestive evidence of association in a meta-analysis of our European ancestry samples. These SNPs were rs7754561 with type 2 diabetes 0.85 [95% CI 0.78-0.92], P = 0.00003) and rs1799774 with BMI (homozygotes of the delT-allele, 0.6 [0.42-0.88], P = 0.007). However, these findings are not supported by other studies. We did not observe a reproducible association between these three ENPP1 variants and BMI or type 2 diabetes.
  •  
5.
  • Lyssenko, Valeriya, et al. (författare)
  • Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:1, s. 166-174
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of individuals at high risk of developing type 2 diabetes is a prerequisite for prevention of the disease. We therefore studied risk factors predicting type 2 diabetes in the Botnia Study in western Finland. A total of 2,115 nondiabetic individuals were prospectively followed with repeated oral glucose tolerance tests. After a median follow-up of 6 years, 127 (6%) subjects developed diabetes. A family history of diabetes (hazard ratio [HR] 2.2, P = 0.008), BMI (HR for comparison of values below or above the median 2.1, P < 0.001), waist-to-height index (2.3, P < 0.001), insulin resistance (2.1, P = 0.0004), and β-cell function adjusted for insulin resistance (2.7, P < 0.0001) predicted diabetes. Marked deterioration in β-cell function with modest changes in insulin sensitivity was observed during the transition to diabetes. The combination of FPG ≥5.6 mmol/l, BMI ≥30 kg/m2, and family history of diabetes was a strong predictor of diabetes (3.7, P < 0.0001). Of note, using FPG ≥6.1 mmol/l or 2-h glucose ≥7.8 mmol/l did not significantly improve prediction of type 2 diabetes. In conclusion, a marked deterioration in β-cell function precedes the onset of type 2 diabetes. These individuals can be identified early by knowledge of FPG, BMI, and family history of diabetes.
  •  
6.
  • Nilsson, Emma A, et al. (författare)
  • Genetic and Nongenetic Regulation of CAPN10 mRNA Expression in Skeletal Muscle.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:10, s. 3015-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • The gene encoding calpain-10 (CAPN10) has been identified as a candidate gene for type 2 diabetes. Our aim was to study the impact of genetic (heritability and polymorphisms) and nongenetic (insulin, free fatty acids, and age) factors on CAPN10 mRNA expression in skeletal muscle using two different study designs. Muscle biopsies were obtained before and after hyperinsulinemic-euglycemic clamps from 166 young and elderly monozygotic and dizygotic twins as well as from 15 subjects with normal (NGT) or impaired glucose tolerance (IGT) exposed to an Intralipid infusion. We found hereditary effects on both basal and insulin-exposed CAPN10 mRNA expression. Carriers of the type 2 diabetes–associated single nucleotide polymorphism (SNP)-43 G/G genotype had reduced CAPN10 mRNA levels compared with subjects carrying the SNP-43 A-allele. Age had no significant influence on CAPN10 mRNA levels. Insulin had no significant effect on CAPN10 mRNA levels, neither in the twins nor in the basal state of the Intralipid study. However, after a 24-h infusion of Intralipid, we noted a significant increase in CAPN10 mRNA in response to insulin in subjects with NGT but not in subjects with IGT. In conclusion, we provide evidence that mRNA expression of CAPN10 in skeletal muscle is under genetic control. Glucose-tolerant but not glucose-intolerant individuals upregulate their CAPN10 mRNA levels in response to prolonged exposure to fat.
  •  
7.
  • Saxena, Richa, et al. (författare)
  • Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:10, s. 2890-2895
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, common noncoding variants in the TCF7L2 gene were strongly associated with increased risk of type 2 diabetes in samples from Iceland, Denmark, and the U.S. We genotyped 13 single nucleotide polymorphisms (SNPs) across TCF7L2 in 8,310 individuals in family-based and case-control designs from Scandinavia, Poland, and the U.S. We convincingly confirmed the previous association of TCF7L2 SNPs with the risk of type 2 diabetes (rs7903146T odds ratio 1.40 [95% CI 1.30-1.50], P = 6.74 x 10(-20)). In nondiabetic individuals, the risk genotypes were associated with a substantial reduction in the insulinogenic index derived from an oral glucose tolerance test (risk allele homozygotes have half the insulin response to glucose of noncarriers, P = 0.003) but not with increased insulin resistance. These results suggest that TCF7L2 variants may act through insulin secretion to increase the risk of type 2 diabetes.
  •  
8.
  • Sun, MW, et al. (författare)
  • Haplotype structures and large-scale association testing of the 5 ' AMP-activated protein kinase genes PRK4A2, PRKAB1, and PRK4B1 with type 2 diabetes
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:3, s. 849-855
  • Tidskriftsartikel (refereegranskat)abstract
    • AMP-activated protein kinase (AMPK) is a key molecular regulator of cellular metabolism, and its activity is induced by both metformin and thiazolidinedione antidiabetic medications. It has therefore been proposed both as a putative agent in the pathophysiology of type 2 diabetes and as a valid target for therapeutic intervention. Thus, the genes that encode the various AMPK subunits are intriguing candidates for the inherited basis of type 2 diabetes. We therefore set out to test for the association of common variants in the genes that encode three selected AMPK subunits with type 2 diabetes and related phenotypes. Of the seven genes that encode AMPK isoforms, we initially chose PRKAA2, PRKAB1, and PRKAB2 because of their higher prior probability of association with type 2 diabetes, based on previous reports of genetic linkage, functional molecular studies, expression patterns, and pharmacological evidence. We determined their haplotype structure, selected a subset of tag single nucleotide polymorphisms that comprehensively capture the extent of common genetic variation in these genes, and genotyped them in family-based and case/control samples comprising 4,206 individuals. Analysis of single-marker and multi-marker tests revealed no association with type 2 diabetes, fasting plasma glucose, or insulin sensitivity. Several nominal associations of variants in PRKAA2 and PRKAB1 with BMI appear to be consistent with statistical noise.
  •  
9.
  • Winckler, W, et al. (författare)
  • Association testing of variants in the hepatocyte nuclear factor 4 alpha gene with risk of type 2 diabetes in 7,883 people
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:3, s. 886-892
  • Tidskriftsartikel (refereegranskat)abstract
    • Two recent publications reported association of common polymorphisms in the P2 promoter of hepatocyte nuclear factor 4alpha (HNF4alpha) (the MODY1 gene) with risk for type 2 diabetes. We attempted to reproduce this putative association by genotyping 11 single nucleotide polymorphism (SNPs) spanning the HNF4a coding region and the P2 promoter in >3,400 patients and control subjects from Sweden, Finland, and Canada. One SNP that was consistently associated in the two previous reports (rs1884613, in the P2 promoter region) also trended in the same direction in our sample, albeit with a lower estimated odds ratio (OR) of 1.11 (P = 0.05, one-tailed). We genotyped this SNP (rs1884613) in an additional 4,400 subjects from North America and Poland. In this sample, the association was not confirmed and trended in the opposite direction (OR 0.88). Meta-analysis of our combined sample of 7,883 people (three times larger than the two initial reports combined) yielded an OR of 0.97 (P = 0.27). Finally, we provide an updated analysis of haplotype structure in the region to guide any further investigation of common variation in HNF4alpha. Although our combined results fail to replicate the previously reported association of common variants in HNF4alpha with risk for type 2 diabetes, we cannot exclude an effect smaller than that originally proposed, heterogeneity among samples, variation in as-yet-unmeasured genotypic or environmental modifiers, or true association secondary to linkage disequilibrium (LD) with as-yet-undiscovered variant(s) in the region.
  •  
10.
  • Winckler, Wendy, et al. (författare)
  • Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:3, s. 685-693
  • Tidskriftsartikel (refereegranskat)abstract
    • An important question in human genetics is the extent to which genes causing monogenic forms of disease harbor common variants that may contribute to the more typical form of that disease. We aimed to comprehensively evaluate the extent to which common variation irk the six known maturity-onset diabetes of the young (MODY) genes, which cause a monogenic form of type 2 diabetes, is associated with type 2 diabetes. Specifically, we determined patterns of common sequence variation in the genes encoding Gck, lpf1, Tcf2, and NeuroD1 (MODY2 and MODY4-MODY6, respectively), selected a comprehensive set of 107 tag single nucleotide polymorphisms (SNPs) that captured common variation, and genotyped each in 4,206 patients and control subjects from Sweden, Finland, and Canada (including family-based studies and unrelated case-control subjects). All SNPs with a nominal P value < 0.1 for association to type 2 diabetes in this initial screen were then genotyped in an additional 4,470 subjects from North America and Poland. Of 30 nominally significant SNPs from the initial sample, 8 achieved consistent results in the replication sample. We found the strongest effect at rs757210 in intron 2 of TCF2, with corrected P values < 0.01 for an odds ratio (OR) of 1.13. This association was observed again in an independent sample of 5,891 unrelated case and control subjects and 500 families from the U.K., for an overall OR of 1.12 and a P value < 10(-6) in > 15,000 samples. We combined these results with our previous studies on HNF4 alpha and TCF1 and explicitly tested for gene-gene interactions among these variants and with several known type 2 diabetes susceptibility loci, and we found no genetic interactions between these six genes. We conclude that although rare variants in these six genes explain most cases of MODY, common variants in these same genes contribute very modestly, if at all, to the common form of type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy