SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2005-2009);pers:(Zierath JR)"

Search: L773:0012 1797 OR L773:1939 327X > (2005-2009) > Zierath JR

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bach, D, et al. (author)
  • Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6
  • 2005
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:9, s. 2685-2693
  • Journal article (peer-reviewed)abstract
    • The primary gene mutated in Charcot-Marie-Tooth type 2A is mitofusin-2 (Mfn2). Mfn2 encodes a mitochondrial protein that participates in the maintenance of the mitochondrial network and that regulates mitochondrial metabolism and intracellular signaling. The potential for regulation of human Mfn2 gene expression in vivo is largely unknown. Based on the presence of mitochondrial dysfunction in insulin-resistant conditions, we have examined whether Mfn2 expression is dysregulated in skeletal muscle from obese or nonobese type 2 diabetic subjects, whether muscle Mfn2 expression is regulated by body weight loss, and the potential regulatory role of tumor necrosis factor (TNF)α or interleukin-6. We show that mRNA concentration of Mfn2 is decreased in skeletal muscle from both male and female obese subjects. Muscle Mfn2 expression was also reduced in lean or in obese type 2 diabetic patients. There was a strong negative correlation between the Mfn2 expression and the BMI in nondiabetic and type 2 diabetic subjects. A positive correlation between the Mfn2 expression and the insulin sensitivity was also detected in nondiabetic and type 2 diabetic subjects. To determine the effect of weight loss on Mfn2 mRNA expression, six morbidly obese subjects were subjected to weight loss by bilio-pancreatic diversion. Mean expression of muscle Mfn2 mRNA increased threefold after reduction in body weight, and a positive correlation between muscle Mfn2 expression and insulin sensitivity was again detected. In vitro experiments revealed an inhibitory effect of TNFα or interleukin-6 on Mfn2 expression in cultured cells. We conclude that body weight loss upregulates the expression of Mfn2 mRNA in skeletal muscle of obese humans, type 2 diabetes downregulates the expression of Mfn2 mRNA in skeletal muscle, Mfn2 expression in skeletal muscle is directly proportional to insulin sensitivity and is inversely proportional to the BMI, TNFα and interleukin-6 downregulate Mfn2 expression and may participate in the dysregulation of Mfn2 expression in obesity or type 2 diabetes, and the in vivo modulation of Mfn2 mRNA levels is an additional level of regulation for the control of muscle metabolism and could provide a molecular mechanism for alterations in mitochondrial function in obesity or type 2 diabetes.
  •  
2.
  • Barnes, BR, et al. (author)
  • Changes in exercise-induced gene expression in 5'-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice
  • 2005
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:12, s. 3484-3489
  • Journal article (peer-reviewed)abstract
    • 5′-AMP–activated protein kinase (AMPK) is important for metabolic sensing. We used AMPKγ3 mutant–overexpressing Tg-Prkag3225Q and AMPKγ3-knockout Prkag3−/− mice to determine the role of the AMPKγ3 isoform in exercise-induced metabolic and gene regulatory responses in skeletal muscle. Mice were studied after 2 h swimming or 2.5 h recovery. Exercise increased basal and insulin-stimulated glucose transport, with similar responses among genotypes. In Tg-Prkag3225Q mice, acetyl-CoA carboxylase (ACC) phosphorylation was increased and triglyceride content was reduced after exercise, suggesting that this mutation promotes greater reliance on lipid oxidation. In contrast, ACC phosphorylation and triglyceride content was similar between wild-type and Prkag3−/− mice. Expression of genes involved in lipid and glucose metabolism was altered by genetic modification of AMPKγ3. Expression of lipoprotein lipase 1, carnitine palmitoyl transferase 1b, and 3-hydroxyacyl–CoA dehydrogenase was increased in Tg-Prkag3225Q mice, with opposing effects in Prkag3−/− mice after exercise. GLUT4, hexokinase II (HKII), and glycogen synthase mRNA expression was increased in Tg-Prkag3225Q mice after exercise. GLUT4 and HKII mRNA expression was increased in wild-type mice and blunted in Prkag3−/− mice after recovery. In conclusion, the Prkag3225Q mutation, rather than presence of a functional AMPKγ3 isoform, directly promotes metabolic and gene regulatory responses along lipid oxidative pathways in skeletal muscle after endurance exercise.
  •  
3.
  • Bouzakri, K, et al. (author)
  • IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients
  • 2006
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:3, s. 785-791
  • Journal article (peer-reviewed)abstract
    • Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1–associated phosphatidylinositol 3-kinase activity, and extracellular signal–regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal IRS-1 Ser (312) and Ser (616) phosphorylation was also increased in nondiabetic kidney transplant recipients. Insulin increased phosphorylation of IRS-1 at Ser (312) but not Ser (616) in healthy subjects, with impairments noted in nondiabetic kidney and pancreas-kidney transplant recipients. Insulin action on ERK-1/2 and Akt phosphorylation was impaired in pancreas-kidney transplant recipients and was preserved in nondiabetic kidney transplant recipients. Importantly, insulin stimulation of the Akt substrate AS160 was impaired in nondiabetic kidney and pancreas-kidney transplant recipients. In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia.
  •  
4.
  • Deshmukh, A, et al. (author)
  • Exercise-induced phosphorylation of the novel Akt substrates AS160 and filamin A in human skeletal muscle
  • 2006
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:6, s. 1776-1782
  • Journal article (peer-reviewed)abstract
    • Skeletal muscle contraction stimulates multiple signaling cascades that govern a variety of metabolic and transcriptional events. Akt/protein kinase B regulates metabolism and growth/muscle hypertrophy, but contraction effects on this target and its substrates are varied and may depend on the mode of the contractile stimulus. Accordingly, we determined the effects of endurance or resistance exercise on phosphorylation of Akt and downstream substrates in six trained cyclists who performed a single bout of endurance or resistance exercise separated by ∼7 days. Muscle biopsies were taken from the vastus lateralis at rest and immediately after exercise. Akt Ser473 phosphorylation was increased (1.8-fold; P = 0.011) after endurance but was unchanged after resistance exercise. Conversely, Akt Thr308 phosphorylation was unaltered after either bout of exercise. Several exercise-responsive phosphoproteins were detected by immunoblot analysis with a phospho-Akt substrate antibody. pp160 and pp300 were identified as AS160 and filamin A, respectively, with increased phosphorylation (2.0- and 4.9-fold, respectively; P < 0.05) after endurance but not resistance exercise. In conclusion, AS160 and filamin A may provide an important link to mediate endurance exercise–induced bioeffects in skeletal muscle.
  •  
5.
  • Karlsson, HKR, et al. (author)
  • Effects of metformin and rosiglitazone treatment on insulin signaling and glucose uptake in patients with newly diagnosed type 2 diabetes: a randomized controlled study
  • 2005
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:5, s. 1459-1467
  • Journal article (peer-reviewed)abstract
    • The effect of metformin or rosiglitazone monotherapy versus placebo on insulin signaling and gene expression in skeletal muscle of patients with newly diagnosed type 2 diabetes was determined. A euglycemic-hyperinsulinemic clamp, combined with skeletal muscle biopsies and glucose uptake measurements over rested and exercised muscle, was performed before and after 26 weeks of metformin (n = 9), rosiglitazone (n = 10), or placebo (n = 11) treatment. Insulin-mediated whole-body and leg muscle glucose uptake was enhanced 36 and 32%, respectively, after rosiglitazone (P < 0.01) but not after metformin or placebo treatment. Insulin increased insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation, IRS-1–associated phosphatidylinositol (PI) 3-kinase activity, and phosphorylation of Akt Ser473 and AS160, a newly described Akt substrate that plays a role in GLUT4 exocytosis, ∼2.3 fold before treatment. These insulin signaling parameters were unaltered after metformin, rosiglitazone, or placebo treatment. Expression of selected genes involved in glucose and fatty acid metabolism in skeletal muscle was unchanged between the treatment groups. Low-intensity acute exercise increased insulin-mediated glucose uptake but was without effect on insulin signaling. In conclusion, the insulin-sensitizing effects of rosiglitazone are independent of enhanced signaling of IRS-1/PI 3-kinase/Akt/AS160 in patients with newly diagnosed type 2 diabetes.
  •  
6.
  • Karlsson, HKR, et al. (author)
  • Insulin signaling and glucose transport in skeletal muscle from first-degree relatives of type 2 diabetic patients
  • 2006
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:5, s. 1283-1288
  • Journal article (peer-reviewed)abstract
    • Aberrant insulin signaling and glucose metabolism in skeletal muscle from type 2 diabetic patients may arise from genetic defects and an altered metabolic milieu. We determined insulin action on signal transduction and glucose transport in isolated vastus lateralis skeletal muscle from normal glucose-tolerant first-degree relatives of type 2 diabetic patients (n = 8, 41 ± 3 years, BMI 25.1 ± 0.8 kg/m2) and healthy control subjects (n = 9, 40 ± 2 years, BMI 23.4 ± 0.7 kg/m2) with no family history of diabetes. Basal and submaximal insulin-stimulated (0.6 and 1.2 nmol/l) glucose transport was comparable between groups, whereas the maximal response (120 nmol/l) was 38% lower (P < 0.05) in the relatives. Insulin increased phosphorylation of Akt and Akt substrate of 160 kDa (AS160) in a dose-dependent manner, with comparable responses between groups. AS160 phosphorylation and glucose transport were positively correlated in control subjects (R2 = 0.97, P = 0.01) but not relatives (R2 = 0.46, P = 0.32). mRNA of key transcriptional factors and coregulators of mitochondrial biogenesis were also determined. Skeletal muscle mRNA expression of peroxisome proliferator–activated receptor (PPAR) γ coactivator (PGC)-1α, PGC-1β, PPARδ, nuclear respiratory factor-1, and uncoupling protein-3 was comparable between first-degree relatives and control subjects. In conclusion, the uncoupling of insulin action on Akt/AS160 signaling and glucose transport implicates defective GLUT4 trafficking as an early event in the pathogenesis of type 2 diabetes.
  •  
7.
  • Karlsson, HKR, et al. (author)
  • Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects
  • 2005
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:6, s. 1692-1697
  • Journal article (peer-reviewed)abstract
    • AS160 is a newly described substrate for the protein kinase Akt that links insulin signaling and GLUT4 trafficking. In this study, we determined the expression of and in vivo insulin action on AS160 in human skeletal muscle. In addition, we compared the effect of physiological hyperinsulinemia on AS160 phosphorylation in 10 lean−to−moderately obese type 2 diabetic and 9 healthy subjects. Insulin infusion increased the phosphorylation of several proteins reacting with a phospho-Akt substrate antibody. We focused on AS160, as this Akt substrate has been linked to glucose transport. A 160-kDa phosphorylated protein was identified as AS160 by immunoblot analysis with an AS160-specific antibody. Physiological hyperinsulinemia increased AS160 phosphorylation 2.9-fold in skeletal muscle of control subjects (P < 0.001). Insulin-stimulated AS160 phosphorylation was reduced 39% (P < 0.05) in type 2 diabetic patients. AS160 protein expression was similar in type 2 diabetic and control subjects. Impaired AS160 phosphorylation was related to aberrant Akt signaling; insulin action on Akt Ser473 phosphorylation was not significantly reduced in type 2 diabetic compared with control subjects, whereas Thr308 phosphorylation was impaired 51% (P < 0.05). In conclusion, physiological hyperinsulinemia increases AS160 phosphorylation in human skeletal muscle. Moreover, defects in insulin action on AS160 may impair GLUT4 trafficking in type 2 diabetes.
  •  
8.
  • Plomgaard, P, et al. (author)
  • Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation
  • 2005
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:10, s. 2939-2945
  • Journal article (peer-reviewed)abstract
    • Most lifestyle-related chronic diseases are characterized by low-grade systemic inflammation and insulin resistance. Excessive tumor necrosis factor-α (TNF-α) concentrations have been implicated in the development of insulin resistance, but direct evidence in humans is lacking. Here, we demonstrate that TNF-α infusion in healthy humans induces insulin resistance in skeletal muscle, without effect on endogenous glucose production, as estimated by a combined euglycemic insulin clamp and stable isotope tracer method. TNF-α directly impairs glucose uptake and metabolism by altering insulin signal transduction. TNF-α infusion increases phosphorylation of p70 S6 kinase, extracellular signal–regulated kinase-1/2, and c-Jun NH2-terminal kinase, concomitant with increased serine and reduced tyrosine phosphorylation of insulin receptor substrate-1. These signaling effects are associated with impaired phosphorylation of Akt substrate 160, the most proximal step identified in the canonical insulin signaling cascade regulating GLUT4 translocation and glucose uptake. Thus, excessive concentrations of TNF-α negatively regulate insulin signaling and whole-body glucose uptake in humans. Our results provide a molecular link between low-grade systemic inflammation and the metabolic syndrome.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view