SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2005-2009);spr:eng"

Sökning: L773:0012 1797 OR L773:1939 327X > (2005-2009) > Engelska

  • Resultat 1-10 av 158
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahrén, Bo (författare)
  • beta- and alpha-Cell Dysfunction in Subjects Developing Impaired Glucose Tolerance Outcome of a 12-Year Prospective Study in Postmenopausal Caucasian Women
  • 2009
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 58:3, s. 726-731
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-This study assessed insulin and glucagon secretion in relation to insulin sensitivity in Caucasian women who develop impaired glucose tolerance (IGT) versus those who maintain normal glucose tolerance (NGT) over a 12-year period. RESEARCH DESIGN AND METHODS-At baseline and after 3, 8, and 12 years, glucose tolerance (75-g oral glucose tolerance test), insulin sensitivity (euglycemic-hyperinsulinemic clamp), and insulin and glucagon secretion (2- to 5-min responses to 5 g arginine i.v. at fasting, 14 and >25 mmol/l glucose) were determined in 53 healthy Caucasian women (aged 58 years at. baseline) who all had NGT at baseline. RESULTS-During the 12-year period, 26 subjects developed IGT, whereas the remaining 27 subjects maintained NGT throughout the 12-year period. Subjects developing IGT had lower insulin sensitivity than those maintaining NGT in the tests preceding diagnosis of IGT (P <= 0.05). When judged in relation to insulin sensitivity, P-cell glucose sensitivity and maximal insulin secretion were lower in those who later developed IGT than in those maintaining NGT at all tests (P : 0.05). Furthermore, subject's who developed IGT had defective suppression of glucagon secretion by glucose in the test preceding diagnosis of IGT when they still had NGT (P : 0.05). CONCLUSIONS-beta- and alpha-cell dysfunction are evident several years before diagnosis of IGT, and islet dysfunction is manifeste as impaired glucose sensitivity of the beta- and (x-cells and reduced maximal insulin secretion. Diabetes 58:726-731, 2009
  •  
2.
  • Andrew, R, et al. (författare)
  • The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:5, s. 1364-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Cortisol is regenerated from cortisone by 11β-hydroxysteroid dehydrogenase type 1 (11HSD1), amplifying glucocorticoid action in adipose tissue and liver. 11HSD1 inhibitors are being developed for type 2 diabetes and may be most effective in obesity, where adipose 11HSD1 is increased. However, the magnitude of regeneration of cortisol in different tissues in humans is unknown, hindering understanding of the pathophysiological and therapeutic importance of 11HSD1. In eight healthy men, we infused 9,11,12,12-2H4-cortisol and measured tracer enrichment in the hepatic vein as an indicator of total splanchnic cortisol generation. Oral cortisone (25 mg) was then given to measure first-pass hepatic cortisol generation. In steady state, splanchnic cortisol production was 45 ± 11 nmol/min when arterialized plasma cortisone concentration was 92 ± 7 nmol/l. Extrapolation from hepatic cortisol generation after oral corti-sone suggested that, at steady state, the liver contributes 15.2 nmol/min and extrahepatic splanchnic tissue contributes 29.8 nmol/min to the total splanchnic cortisol production. We conclude that tissues draining into the portal vein, including visceral adipose tissue, contribute substantially to the regeneration of cortisol. Thus, in addition to free fatty acids and adipokines, the portal vein delivers cortisol to the liver, and inhibition of 11HSD1 in visceral adipose tissue may indeed be valuable in ameliorating insulin resistance in obesity.
  •  
3.
  • Bach, D, et al. (författare)
  • Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:9, s. 2685-2693
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary gene mutated in Charcot-Marie-Tooth type 2A is mitofusin-2 (Mfn2). Mfn2 encodes a mitochondrial protein that participates in the maintenance of the mitochondrial network and that regulates mitochondrial metabolism and intracellular signaling. The potential for regulation of human Mfn2 gene expression in vivo is largely unknown. Based on the presence of mitochondrial dysfunction in insulin-resistant conditions, we have examined whether Mfn2 expression is dysregulated in skeletal muscle from obese or nonobese type 2 diabetic subjects, whether muscle Mfn2 expression is regulated by body weight loss, and the potential regulatory role of tumor necrosis factor (TNF)α or interleukin-6. We show that mRNA concentration of Mfn2 is decreased in skeletal muscle from both male and female obese subjects. Muscle Mfn2 expression was also reduced in lean or in obese type 2 diabetic patients. There was a strong negative correlation between the Mfn2 expression and the BMI in nondiabetic and type 2 diabetic subjects. A positive correlation between the Mfn2 expression and the insulin sensitivity was also detected in nondiabetic and type 2 diabetic subjects. To determine the effect of weight loss on Mfn2 mRNA expression, six morbidly obese subjects were subjected to weight loss by bilio-pancreatic diversion. Mean expression of muscle Mfn2 mRNA increased threefold after reduction in body weight, and a positive correlation between muscle Mfn2 expression and insulin sensitivity was again detected. In vitro experiments revealed an inhibitory effect of TNFα or interleukin-6 on Mfn2 expression in cultured cells. We conclude that body weight loss upregulates the expression of Mfn2 mRNA in skeletal muscle of obese humans, type 2 diabetes downregulates the expression of Mfn2 mRNA in skeletal muscle, Mfn2 expression in skeletal muscle is directly proportional to insulin sensitivity and is inversely proportional to the BMI, TNFα and interleukin-6 downregulate Mfn2 expression and may participate in the dysregulation of Mfn2 expression in obesity or type 2 diabetes, and the in vivo modulation of Mfn2 mRNA levels is an additional level of regulation for the control of muscle metabolism and could provide a molecular mechanism for alterations in mitochondrial function in obesity or type 2 diabetes.
  •  
4.
  • Baker, DJ, et al. (författare)
  • Glycogen phosphorylase inhibition in type 2 diabetes therapy: a systematic evaluation of metabolic and functional effects in rat skeletal muscle
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:8, s. 2453-2459
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibition of hepatic glycogen phosphorylase is a promising treatment strategy for attenuating hyperglycemia in type 2 diabetes. Crystallographic studies indicate, however, that selectivity between glycogen phosphorylase in skeletal muscle and liver is unlikely to be achieved. Furthermore, glycogen phosphorylase activity is critical for normal skeletal muscle function, and thus fatigue may represent a major development hurdle for this therapeutic strategy. We have carried out the first systematic evaluation of this important issue. The rat gastrocnemius-plantaris-soleus (GPS) muscle was isolated and perfused with a red cell suspension, containing 3 μmol/l glycogen phosphorylase inhibitor (GPi) or vehicle (control). After 60 min, the GPS muscle was snap-frozen (rest, n = 11 per group) or underwent 20 s of maximal contraction (n = 8, control; n = 9, GPi) or 10 min of submaximal contraction (n = 10 per group). GPi pretreatment reduced the activation of the glycogen phosphorylase a form by 16% at rest, 25% after 20 s, and 44% after 10 min of contraction compared with the corresponding control. AMP-mediated glycogen phosphorylase activation was impaired only at 10 min (by 21%). GPi transiently reduced muscle lactate production during contraction, but other than this, muscle energy metabolism and function remained unaffected at both contraction intensities. These data indicate that glycogen phosphorylase inhibition aimed at attenuating hyperglycaemia is unlikely to negatively impact muscle metabolic and functional capacity.
  •  
5.
  • Baker, DJ, et al. (författare)
  • The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:6, s. 1855-1861
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycogen phosphorylase inhibition represents a promising strategy to suppress inappropriate hepatic glucose output, while muscle glycogen is a major source of fuel during contraction. Glycogen phosphorylase inhibitors (GPi) currently being investigated for the treatment of type 2 diabetes do not demonstrate hepatic versus muscle glycogen phosphorylase isoform selectivity and may therefore impair patient aerobic exercise capabilities. Skeletal muscle energy metabolism and function are not impaired by GPi during high-intensity contraction in rat skeletal muscle; however, it is unknown whether glycogen phosphorylase inhibitors would impair function during prolonged lower-intensity contraction. Utilizing a novel red cell–perfused rodent gastrocnemius-plantaris-soleus system, muscle was pretreated for 60 min with either 3 μmol/l free drug GPi (n = 8) or vehicle control (n = 7). During 60 min of aerobic contraction, GPi treatment resulted in ∼35% greater fatigue. Muscle glycogen phosphorylase a form (P &lt; 0.01) and maximal activity (P &lt; 0.01) were reduced in the GPi group, and postcontraction glycogen (121.8 ± 16.1 vs. 168.3 ± 8.5 mmol/kg dry muscle, P &lt; 0.05) was greater. Furthermore, lower muscle lactate efflux and glucose uptake (P &lt; 0.01), yet higher muscle Vo2, support the conclusion that carbohydrate utilization was impaired during contraction. Our data provide new confirmation that muscle glycogen plays an essential role during submaximal contraction. Given the critical role of exercise prescription in the treatment of type 2 diabetes, it will be important to monitor endurance capacity during the clinical evaluation of nonselective GPi. Alternatively, greater effort should be devoted toward the discovery of hepatic-selective GPi, hepatic-specific drug delivery strategies, and/or alternative strategies for controlling excess hepatic glucose production in type 2 diabetes.
  •  
6.
  • Barnes, BR, et al. (författare)
  • Changes in exercise-induced gene expression in 5'-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:12, s. 3484-3489
  • Tidskriftsartikel (refereegranskat)abstract
    • 5′-AMP–activated protein kinase (AMPK) is important for metabolic sensing. We used AMPKγ3 mutant–overexpressing Tg-Prkag3225Q and AMPKγ3-knockout Prkag3−/− mice to determine the role of the AMPKγ3 isoform in exercise-induced metabolic and gene regulatory responses in skeletal muscle. Mice were studied after 2 h swimming or 2.5 h recovery. Exercise increased basal and insulin-stimulated glucose transport, with similar responses among genotypes. In Tg-Prkag3225Q mice, acetyl-CoA carboxylase (ACC) phosphorylation was increased and triglyceride content was reduced after exercise, suggesting that this mutation promotes greater reliance on lipid oxidation. In contrast, ACC phosphorylation and triglyceride content was similar between wild-type and Prkag3−/− mice. Expression of genes involved in lipid and glucose metabolism was altered by genetic modification of AMPKγ3. Expression of lipoprotein lipase 1, carnitine palmitoyl transferase 1b, and 3-hydroxyacyl–CoA dehydrogenase was increased in Tg-Prkag3225Q mice, with opposing effects in Prkag3−/− mice after exercise. GLUT4, hexokinase II (HKII), and glycogen synthase mRNA expression was increased in Tg-Prkag3225Q mice after exercise. GLUT4 and HKII mRNA expression was increased in wild-type mice and blunted in Prkag3−/− mice after recovery. In conclusion, the Prkag3225Q mutation, rather than presence of a functional AMPKγ3 isoform, directly promotes metabolic and gene regulatory responses along lipid oxidative pathways in skeletal muscle after endurance exercise.
  •  
7.
  • Bjursell, Mikael, 1977, et al. (författare)
  • Opposing effects of adiponectin receptors 1 and 2 on energy metabolism
  • 2007
  • Ingår i: DIABETES. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:3, s. 583-593
  • Tidskriftsartikel (refereegranskat)abstract
    • The adipocyte-derived hormone adiponectin regulates glucose and lipid metabolism and influences the risk for developing obesity, type 2 diabetes, and cardiovascular disease. Adiponectin binds to two different seven-transmembrane domain receptors termed AdipoR1 and AdipoR2. To study the physiological importance of these receptors, AdipoR1 gene knockout mice (AdipoR1−/−) and AdipoR2 gene knockout mice (AdipoR2−/−) were generated. AdipoR1−/− mice showed increased adiposity associated with decreased glucose tolerance, spontaneous locomotor activity, and energy expenditure. However, AdipoR2−/− mice were lean and resistant to high-fat diet–induced obesity associated with improved glucose tolerance and higher spontaneous locomotor activity and energy expenditure and reduced plasma cholesterol levels. Thus, AdipoR1 and AdipoR2 are clearly involved in energy metabolism but have opposing effects.
  •  
8.
  • Bohlooly-Yeganeh, Mohammad, 1966, et al. (författare)
  • Growth hormone overexpression in the central nervous system results in hyperphagia-induced obesity associated with insulin resistance and dyslipidemia.
  • 2005
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 54:1, s. 51-62
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that peripherally administered growth hormone (GH) results in decreased body fat mass. However, GH-deficient patients increase their food intake when substituted with GH, suggesting that GH also has an appetite stimulating effect. Transgenic mice with an overexpression of bovine GH in the central nervous system (CNS) were created to investigate the role of GH in CNS. This study shows that overexpression of GH in the CNS differentiates the effect of GH on body fat mass from that on appetite. The transgenic mice were not GH-deficient but were obese and showed increased food intake as well as increased hypothalamic expression of agouti-related protein and neuropeptide Y. GH also had an acute effect on food intake following intracerebroventricular injection of C57BL/6 mice. The transgenic mice were severely hyperinsulinemic and showed a marked hyperplasia of the islets of Langerhans. In addition, the transgenic mice displayed alterations in serum lipid and lipoprotein levels and hepatic gene expression. In conclusion, GH overexpression in the CNS results in hyperphagia-induced obesity indicating a dual effect of GH with a central stimulation of appetite and a peripheral lipolytic effect.
  •  
9.
  • Bouzakri, K, et al. (författare)
  • IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:3, s. 785-791
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1–associated phosphatidylinositol 3-kinase activity, and extracellular signal–regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal IRS-1 Ser (312) and Ser (616) phosphorylation was also increased in nondiabetic kidney transplant recipients. Insulin increased phosphorylation of IRS-1 at Ser (312) but not Ser (616) in healthy subjects, with impairments noted in nondiabetic kidney and pancreas-kidney transplant recipients. Insulin action on ERK-1/2 and Akt phosphorylation was impaired in pancreas-kidney transplant recipients and was preserved in nondiabetic kidney transplant recipients. Importantly, insulin stimulation of the Akt substrate AS160 was impaired in nondiabetic kidney and pancreas-kidney transplant recipients. In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia.
  •  
10.
  • Brolén, Gabriella, et al. (författare)
  • Signals From the Embryonic Mouse Pancreas Induce Differentiation of Human Embryonic Stem Cells Into Insulin-Producing {beta}-Cell-Like Cells.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:10, s. 2867-2874
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent success in restoring normoglycemia in type 1 diabetes by islet cell transplantation indicates that cell replacement therapy of this severe disease is achievable. However, the severe lack of donor islets has increased the demand for alternative sources of beta-cells, such as adult and embryonic stem cells. Here, we investigate the potential of human embryonic stem cells (hESCs) to differentiate into beta-cells. Spontaneous differentiation of hESCs under two-dimensional growth conditions resulted in differentiation of Pdx1(+)/Foxa2(+) pancreatic progenitors and Pdx1(+)/Isl1(+) endocrine progenitors but no insulin-producing cells. However, cotransplantation of differentiated hESCs with the dorsal pancreas, but not with the liver or telencephalon, from mouse embryos resulted in differentiation of beta-cell-like cell clusters. Comparative analysis of the basic characteristics of hESC-derived insulin(+) cell clusters with human adult islets demonstrated that the insulin(+) cells share important features with normal beta-cells, such as synthesis (proinsulin) and processing (C-peptide) of insulin and nuclear localization of key beta-cell transcription factors, including Foxa2, Pdx1, and Isl1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 158
Typ av publikation
tidskriftsartikel (148)
konferensbidrag (9)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (146)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Groop, Leif (20)
Almgren, Peter (12)
Tuomi, Tiinamaija (9)
Zierath, JR (8)
Ahren, Bo (7)
Lyssenko, Valeriya (7)
visa fler...
Altshuler, David (7)
Tuomi, T. (5)
Isomaa, Bo (5)
Saxena, Richa (5)
Korsgren, Olle (4)
Salehi, S Albert (4)
Franks, Paul (4)
Westerblad, H (4)
Berggren, PO (4)
Nilsson, Peter (4)
Katz, A. (4)
Arner, P (4)
Ohlsson, Claes, 1965 (4)
Ling, Charlotte (4)
Lanner, JT (4)
Orešič, Matej, 1967- (4)
Altshuler, D. (4)
Welsh, Nils (4)
Daly, Mark J. (4)
Carlsson, Per-Ola (4)
Fauconnier, J (4)
Zhang, SJ (4)
Bruton, JD (3)
OSTENSON, CG (3)
Renström, Erik (3)
Luthman, Holger (3)
Rorsman, Patrik (3)
Nilsson, Bo (3)
Wareham, Nicholas J. (3)
Poulsen, Pernille (3)
Vaag, Allan (3)
Eriksson, Karl-Fredr ... (3)
Sundler, Frank (3)
Wallberg-Henriksson, ... (3)
Knowler, William C. (3)
Vaarala, Outi, 1962- (3)
Holm, Cecilia (3)
Oscarsson, Jan, 1960 (3)
Karpe, Fredrik (3)
Smith, Ulf, 1943 (3)
Jansson, Leif (3)
Dahlman, I (3)
Bohlooly-Yeganeh, Mo ... (3)
Daly, M. J. (3)
visa färre...
Lärosäte
Karolinska Institutet (58)
Lunds universitet (48)
Uppsala universitet (27)
Göteborgs universitet (19)
Umeå universitet (16)
Linköpings universitet (9)
visa fler...
Örebro universitet (6)
Stockholms universitet (3)
Chalmers tekniska högskola (3)
Högskolan i Halmstad (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (74)
Samhällsvetenskap (2)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy