SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2015-2019);pers:(Carlsson Annelie)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2015-2019) > Carlsson Annelie

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ping Zhao, Lue, et al. (författare)
  • Next-Generation Sequencing Reveals That HLA-DRB3, -DRB4, and -DRB5 May Be Associated With Islet Autoantibodies and Risk for Childhood Type 1 Diabetes
  • 2016
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 65:3, s. 710-718
  • Tidskriftsartikel (refereegranskat)abstract
    • The possible contribution of HLA-DRB3, -DRB4, and -DRB5 alleles to type 1 diabetes risk and to insulin autoantibody (IAA), GAD65 (GAD autoantibody [GADA]), IA-2 antigen (IA-2A), or ZnT8 against either of the three amino acid variants R, W, or Q at position 325 (ZnT8RA, ZnT8WA, and ZnT8QA, respectively) at clinical diagnosis is unclear. Next-generation sequencing (NGS) was used to determine all DRB alleles in consecutively diagnosed patients ages 1-18 years with islet autoantibody-positive type 1 diabetes (n = 970) and control subjects (n = 448). DRB3, DRB4, or DRB5 alleles were tested for an association with the risk of DRB1 for autoantibodies, type 1 diabetes, or both. The association between type 1 diabetes and DRB1*03:01:01 was affected by DRB3*01:01:02 and DRB3*02:02:01. These DRB3 alleles were associated positively with GADA but negatively with ZnT8WA, IA-2A, and IAA. The negative association between type 1 diabetes and DRB1*13:01:01 was affected by DRB3*01:01:02 to increase the risk and by DRB3*02:02:01 to maintain a negative association. DRB4*01:03:01 was strongly associated with type 1 diabetes (P = 10(-36)), yet its association was extensively affected by DRB1 alleles from protective (DRB1*04:03:01) to high (DRB1*04:01:01) risk, but its association with DRB1*04:05:01 decreased the risk. HLA-DRB3, -DRB4, and -DRB5 affect type 1 diabetes risk and islet autoantibodies. HLA typing with NGS should prove useful to select participants for prevention or intervention trials.
  •  
2.
  • Wester, Axel, et al. (författare)
  • An Increased Diagnostic Sensitivity of Truncated GAD65 Autoantibodies in Type 1 Diabetes May Be Related to HLA-DQ8
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:3, s. 735-740
  • Tidskriftsartikel (refereegranskat)abstract
    • N-terminally truncated (96-585) GAD65 (tGAD65) autoantibodies may better delineate type 1 diabetes than full-length GAD65 (fGAD65) autoantibodies. We aimed to compare the diagnostic sensitivity and specificity between fGAD65 and tGAD65 autoantibodies for type 1 diabetes in relation to HLA-DQ. Sera from children and adolescents with newly diagnosed type 1 diabetes (n = 654) and healthy control subjects (n = 605) were analyzed in radiobinding assays for fGAD65 (fGADA), tGAD65 (tGADA), and commercial (125)I-GAD65 (RSRGADA) autoantibodies. The diagnostic sensitivity and specificity in the receiver operating characteristic curve did not differ between fGADA and tGADA. At the optimal cutoff, the diagnostic sensitivity for fGADA was lower than tGADA at similar diagnostic specificities. In 619 patients, 64% were positive for RSRGADA compared with 68% for fGADA and 74% for tGADA. Using non-DQ2/non-DQ8 patients as reference, the risk of being diagnosed with fGADA and tGADA was increased in patients with DQ2/2 and DQ2/8. Notably, logistic regression analysis suggested that DQ8/8 patients had an increased risk to be diagnosed with tGADA (P = 0.003) compared with fGADA (P = 0.09). tGADA had a higher diagnostic sensitivity for type 1 diabetes than both fGADA and RSRGADA. As DQ8/8 patients represent 10-11% of patients with newly diagnosed type 1 diabetes <18 years of age, tGADA analysis should prove useful for disease classification.
  •  
3.
  • Zhao, Lue Ping, et al. (författare)
  • Eleven Amino Acids of HLA-DRB1 and Fifteen Amino Acids of HLA-DRB3, 4, and 5 Include Potentially Causal Residues Responsible for the Risk of Childhood Type 1 Diabetes
  • 2019
  • Ingår i: Diabetes. - Arlington, VA, United States : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:8, s. 1692-1704
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation targeted sequencing of HLA-DRB1 and HLA-DRB3, -DRB4, and -DRB5 (abbreviated as DRB345) provides high resolution of functional variant positions to investigate their associations with type 1 diabetes risk and with autoantibodies against insulin (IAA), GAD65 (GADA), IA-2 (IA-2A), and ZnT8 (ZnT8A). To overcome exceptional DR sequence complexity as a result of high polymorphisms and extended linkage disequilibrium among the DR loci, we applied a novel recursive organizer (ROR) to discover disease-associated amino acid residues. ROR distills disease-associated DR sequences and identifies 11 residues of DRB1, sequences of which retain all significant associations observed by DR genes. Furthermore, all 11 residues locate under/adjoining the peptide-binding groove of DRB1, suggesting a plausible functional mechanism through peptide binding. The 15 residues of DRB345, located respectively in the beta 49-55 homodimerization patch and on the face of the molecule shown to interact with and bind to the accessory molecule CD4, retain their significant disease associations. Further ROR analysis of DR associations with autoantibodies finds that DRB1 residues significantly associated with ZnT8A and DRB345 residues with GADA. The strongest association is between four residues (beta 14, beta 25, beta 71, and beta 73) and IA-2A, in which the sequence ERKA confers a risk association (odds ratio 2.15, P = 10(-18)), and another sequence, ERKG, confers a protective association (odds ratio 0.59, P = 10(-11)), despite a difference of only one amino acid. Because motifs of identified residues capture potentially causal DR associations with type 1 diabetes, this list of residuals is expected to include corresponding causal residues in this study population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy