SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2015-2019);pers:(Groop Leif)"

Sökning: L773:0012 1797 OR L773:1939 327X > (2015-2019) > Groop Leif

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Majdoub, Mahmoud, et al. (författare)
  • Metabolite profiling of LADA challenges the view of a metabolically distinct subtype
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:4, s. 806-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Latent autoimmune diabetes in adults (LADA) usually refers to GAD65 autoantibodies (GADAb)-positive diabetes with onset after 35 years of age and no insulin treatment within the first 6 months after diagnosis. However, it is not always easy to distinguish LADA fromtype 1 or type 2 diabetes. In this study, we examined whether metabolite profiling could help to distinguish LADA (n = 50) from type 1 diabetes (n = 50) and type 2 diabetes (n = 50). Of 123 identified metabolites, 99 differed between the diabetes types. However, no unique metabolite profile could be identified for any of the types. Instead, the metabolome varied along a C-peptide-driven continuum from type 1 diabetes via LADA to type 2 diabetes. LADA was more similar to type 2 diabetes than to type 1 diabetes. In a principal component analysis, LADA patients overlapping with type 1 diabetes progressed faster to insulin therapy than those overlapping with type 2 diabetes. In conclusion, we could not find any unique metabolite profile distinguishing LADA from type 1 and type 2 diabetes. Rather, LADA was metabolically an intermediate of type 1 and type 2 diabetes, with those patients closer to the former showing a faster progression to insulin therapy than those closer to the latter.
  •  
2.
  • Berglund, Lisa, et al. (författare)
  • Glucose-Dependent Insulinotropic Polypeptide (GIP) Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB.
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:1, s. 239-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with extrapancreatic effects beyond glycemic control. Here we demonstrate unexpected effects of GIP signaling in the vasculature. GIP induces the expression of the pro-atherogenic cytokine osteopontin (OPN) in mouse arteries, via local release of endothelin-1 (ET-1) and activation of cAMP response element binding protein (CREB). Infusion of GIP increases plasma OPN levels in healthy individuals. Plasma ET-1 and OPN levels are positively correlated in patients with critical limb ischemia. Fasting GIP levels are higher in individuals with a history of cardiovascular disease (myocardial infarction, stroke) when compared to controls. GIP receptor (GIPR) and OPN mRNA levels are higher in carotid endarterectomies from patients with symptoms (stroke, transient ischemic attacks, amaurosis fugax) than in asymptomatic patients; and expression associates to parameters characteristic of unstable and inflammatory plaques (increased lipid accumulation, macrophage infiltration and reduced smooth muscle cell content). While GIPR expression is predominantly endothelial in healthy arteries from human, mouse, rat and pig; remarkable up-regulation is observed in endothelial and smooth muscle cells upon culture conditions yielding a "vascular disease-like" phenotype. Moreover, a common variant rs10423928 in the GIPR gene associated with increased risk of stroke in type 2 diabetes patients.
  •  
3.
  • Fall, Tove, et al. (författare)
  • Age- and sex-specific causal effects of adiposity on cardiovascular risk factors
  • 2015
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 64:5, s. 1841-1852
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
  •  
4.
  • Honka, Henri, et al. (författare)
  • Bariatric surgery enhances splanchnic vascular responses in patients with type 2 diabetes
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:4, s. 880-885
  • Tidskriftsartikel (refereegranskat)abstract
    • Bariatric surgery results in notable weight loss and alleviates hyperglycemia in patients with type 2 diabetes (T2D). We aimed to characterize the vascular effects of a mixedmeal and infusion of exogenous glucose-dependent insulinotropic polypeptide (GIP) in the splanchnic region in 10 obese patients with T2D before and after bariatric surgery and in 10 lean control subjects. The experiments were carried out on two separate days. Pancreatic and intestinal blood flow (BF) were measured at baseline, 20 min, and 50 min with 15O-water by using positron emission tomography and MRI. Before surgery, pancreatic and intestinal BF responses to a mixed meal did not differ between obese and lean control subjects. Compared with presurgery, the mixed meal induced a greater increase in plasma glucose, insulin, and GIP concentrations after surgery, which was accompanied by a marked augmentation of pancreatic and intestinal BF responses. GIP infusion decreased pancreatic but increased small intestinal BF similarly in all groups both before and after surgery. Taken together, these results demonstrate that bariatric surgery leads to enhanced splanchnic vascular responses as a likely consequence of rapid glucose appearance and GIP hypersecretion.
  •  
5.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
6.
  • Najmi, Laeya Abdoli, et al. (författare)
  • Functional investigations of HNF1A identify rare variants as risk factors for type 2 diabetes in the general population
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:2, s. 335-346
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in HNF1A encoding hepatocyte nuclear factor 1a (HNF-1A) are associated with maturity-onset diabetes of the young form 3 (MODY 3) and type 2 diabetes. We investigated whether functional classification of HNF1A rare coding variants can inform models of diabetes risk prediction in the general population by analyzing the effect of 27 HNF1A variants identified in well-phenotyped populations (n = 4,115). Bioinformatics tools classified 11 variants as likely pathogenic and showed no association with diabetes risk (combined minor allele frequency [MAF] 0.22%; odds ratio [OR] 2.02; 95% CI 0.73-5.60; P = 0.18). However, a different set of 11 variants that reduced HNF-1A transcriptional activity to <60% of normal (wild-type) activity was strongly associated with diabetes in the general population (combined MAF 0.22%; OR 5.04; 95% CI 1.99-12.80; P = 0.0007). Our functional investigations indicate that 0.44% of the population carry HNF1A variants that result in a substantially increased risk for developing diabetes. These results suggest that functional characterization of variants within MODY genes may overcome the limitations of bioinformatics tools for the purposes of presymptomatic diabetes risk prediction in the general population.
  •  
7.
  • Ottosson-Laakso, Emilia, et al. (författare)
  • Glucose-induced Changes in Gene Expression in Human Pancreatic Islets - Causes or Consequences of Chronic Hyperglycemia
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:12, s. 3013-3028
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysregulation of gene expression in islets from type 2 diabetic patients might be causally involved in the development of hyperglycemia or it could develop as a consequence of hyperglycemia, i.e. glucotoxicity. To separate the genes potentially causally involved in pathogenesis from those likely to be secondary to the hyperglycemia we exposed islets from human donors to normal or high glucose concentrations for 24 hours and analyzed gene expression. We compared these findings with gene expression in islets from donors with normal glucose tolerance (NGT) and hyperglycemia (HG, including T2D). The genes whose expression changed in the same direction after short-term glucose exposure as in T2D were considered most likely to be a consequence of hyperglycemia. Genes whose expression changed in HG but not after short-term glucose exposure, in particular genes that also correlated with insulin secretion, were considered the strongest candidates for causal involvement in T2D. E.g. ERO1LB, DOCK10, IGSF11 and PRR14L were down-regulated in HG and correlated positively with insulin secretion suggesting a protective role while TMEM132C was up-regulated in HG and correlated negatively with insulin secretion suggesting a potential pathogenic role.This study provides a catalogue of gene expression changes in human pancreatic islets after exposure to glucose.
  •  
8.
  •  
9.
  • Scott, Robert A., et al. (författare)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
10.
  • Skyler, Jay S, et al. (författare)
  • Differentiation of diabetes by pathophysiology, natural history, and prognosis
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:2, s. 241-255
  • Forskningsöversikt (refereegranskat)abstract
    • The American Diabetes Association, JDRF, the European Association for the Study of Diabetes, and the American Association of Clinical Endocrinologists convened a research symposium, "The Differentiation of Diabetes by Pathophysiology, Natural History and Prognosis" on 10-12 October 2015. International experts in genetics, immunology, metabolism, endocrinology, and systems biology discussed genetic and environmental determinants of type 1 and type 2 diabetes risk and progression, as well as complications. The participants debated how to determine appropriate therapeutic approaches based on disease pathophysiology and stage and defined remaining research gaps hindering a personalized medical approach for diabetes to drive the field to address these gaps. The authors recommend a structure for data stratification to define the phenotypes and genotypes of subtypes of diabetes that will facilitate individualized treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy