SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2020-2021);hsvcat:3"

Sökning: L773:0012 1797 OR L773:1939 327X > (2020-2021) > Medicin och hälsovetenskap

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Herzog, Katharina, et al. (författare)
  • Metabolic Effects of Gastric Bypass Surgery : Is It All About Calories?
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:9, s. 2027-2035
  • Tidskriftsartikel (refereegranskat)abstract
    • Bariatric surgery is an efficient method to induce weight loss and also, frequently, remission of type 2 diabetes (T2D). Unpaired studies have shown bariatric surgery and dietary interventions to differentially affect multiple hormonal and metabolic parameters, suggesting that bariatric surgery causes T2D remission at least partially via unique mechanisms. In the current study, plasma metabolite profiling was conducted in patients with (n = 10) and without T2D (n = 9) subjected to Roux-en-Y gastric bypass surgery (RYGB). Mixed-meal tests were conducted at baseline, after the presurgical very-low-calorie diet (VLCD) intervention, immediately after RYGB, and after a 6-week recovery period. Thereby, we could compare fasted and postprandial metabolic consequences of RYGB and VLCD in the same patients. VLCD yielded a pronounced increase in fasting acylcarnitine levels, whereas RYGB, both immediately and after a recovery period, resulted in a smaller but opposite effect. Furthermore, we observed profound changes in lipid metabolism following VLCD but not in response to RYGB. Most changes previously associated with RYGB were found to be consequences of the presurgical dietary intervention. Overall, our results question previous findings of unique metabolic effects of RYGB and suggest that the effect of RYGB on the metabolite profile is mainly attributed to caloric restriction.
  •  
2.
  • Jönsson, Josefine, et al. (författare)
  • Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord Blood DNA Methylation, Which Associates With Body Composition in the Offspring
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:4, s. 854-866
  • Tidskriftsartikel (refereegranskat)abstract
    • Maternal obesity may lead to epigenetic alterations in the offspring and might thereby contribute to disease later in life. We investigated whether a lifestyle intervention in pregnant women with obesity is associated with epigenetic variation in cord blood and body composition in the offspring. Genome-wide DNA methylation was analyzed in cord blood from 208 offspring from the Treatment of Obese Pregnant women (TOP)-study, which includes pregnant women with obesity randomized to lifestyle interventions comprised of physical activity with or without dietary advice versus control subjects (standard of care). DNA methylation was altered at 379 sites, annotated to 370 genes, in cord blood from offspring of mothers following a lifestyle intervention versus control subjects (false discovery rate [FDR] <5%) when using the Houseman reference-free method to correct for cell composition, and three of these sites were significant based on Bonferroni correction. These 370 genes are overrepresented in gene ontology terms, including response to fatty acids and adipose tissue development. Offspring of mothers included in a lifestyle intervention were born with more lean mass compared with control subjects. Methylation at 17 sites, annotated to, for example, DISC1, GBX2, HERC2, and HUWE1, partially mediates the effect of the lifestyle intervention on lean mass in the offspring (FDR <5%). Moreover, 22 methylation sites were associated with offspring BMI z scores during the first 3 years of life (P < 0.05). Overall, lifestyle interventions in pregnant women with obesity are associated with epigenetic changes in offspring, potentially influencing the offspring's lean mass and early growth.
  •  
3.
  • Li, Qian, et al. (författare)
  • Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:3, s. 465-476
  • Tidskriftsartikel (refereegranskat)abstract
    • Children at increased genetic risk for type 1 diabetes (T1D) after environmental exposures may develop pancreatic islet autoantibodies (IA) at a very young age. Metabolic profile changes over time may imply responses to exposures and signal development of the first IA. Our present research in The Environmental Determinants of Diabetes in the Young (TEDDY) study aimed to identify metabolome-wide signals preceding the first IA against GAD (GADA-first) or against insulin (IAA-first). We profiled metabolomes by mass spectrometry from children's plasma at 3-month intervals after birth until appearance of the first IA. A trajectory analysis discovered each first IA preceded by reduced amino acid proline and branched-chain amino acids (BCAAs), respectively. With independent time point analysis following birth, we discovered dehydroascorbic acid (DHAA) contributing to the risk of each first IA, and γ-aminobutyric acid (GABAs) associated with the first autoantibody against insulin (IAA-first). Methionine and alanine, compounds produced in BCAA metabolism and fatty acids, also preceded IA at different time points. Unsaturated triglycerides and phosphatidylethanolamines decreased in abundance before appearance of either autoantibody. Our findings suggest that IAA-first and GADA-first are heralded by different patterns of DHAA, GABA, multiple amino acids, and fatty acids, which may be important to primary prevention of T1D.
  •  
4.
  • Merino, Jordi, et al. (författare)
  • Interaction Between Type 2 Diabetes Prevention Strategies and Genetic Determinants of Coronary Artery Disease on Cardiometabolic Risk Factors
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:1, s. 112-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronary artery disease (CAD) is more frequent among individuals with dysglycemia. Preventive interventions for diabetes can improve cardiometabolic risk factors (CRFs), but it is unclear whether the benefits on CRFs are similar for individuals at different genetic risk for CAD. We built a 201-variant polygenic risk score (PRS) for CAD and tested for interaction with diabetes prevention strategies on 1-year changes in CRFs in 2,658 Diabetes Prevention Program (DPP) participants. We also examined whether separate lifestyle behaviors interact with PRS and affect changes in CRFs in each intervention group. Participants in both the lifestyle and metformin interventions had greater improvement in the majority of recognized CRFs compared with placebo (P < 0.001) irrespective of CAD genetic risk (Pinteraction > 0.05). We detected nominal significant interactions between PRS and dietary quality and physical activity on 1-year change in BMI, fasting glucose, triglycerides, and HDL cholesterol in individuals randomized to metformin or placebo, but none of them achieved the multiple-testing correction for significance. This study confirms that diabetes preventive interventions improve CRFs regardless of CAD genetic risk and delivers hypothesis-generating data on the varying benefit of increasing physical activity and improving diet on intermediate cardiovascular risk factors depending on individual CAD genetic risk profile.
  •  
5.
  • Nilsen, M. S., et al. (författare)
  • 3-Hydroxyisobutyrate, A Strong Marker of Insulin Resistance in Type 2 Diabetes and Obesity That Modulates White and Brown Adipocyte Metabolism
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:9, s. 1903-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating branched-chain amino acids (BCAAs) associate with insulin resistance and type 2 diabetes. 3-Hydroxyisobutyrate (3-HIB) is a catabolic intermediate of the BCAA valine. In this study, we show that in a cohort of 4,942 men and women, circulating 3-HIB is elevated according to levels of hyperglycemia and established type 2 diabetes. In complementary cohorts with measures of insulin resistance, we found positive correlates for circulating 3-HIB concentrations with HOMA2 of insulin resistance, as well as a transient increase in 3-HIB followed by a marked decrease after bariatric surgery and weight loss. During differentiation, both white and brown adipocytes upregulate BCAA utilization and release increasing amounts of 3-HIB. Knockdown of the 3-HIB-forming enzyme 3-hydroxyisobutyryl-CoA hydrolase decreases release of 3-HIB and lipid accumulation in both cell types. Conversely, addition of 3-HIB to white and brown adipocyte cultures increases fatty acid uptake and modulated insulin-stimulated glucose uptake in a time-dependent manner. Finally, 3-HIB treatment decreases mitochondrial oxygen consumption and generation of reactive oxygen species in white adipocytes, while increasing these measures in brown adipocytes. Our data establish 3-HIB as a novel adipocyte-derived regulator of adipocyte subtype-specific functions strongly linked to obesity, insulin resistance, and type 2 diabetes.
  •  
6.
  • Ouni, Meriem, et al. (författare)
  • Epigenetic changes in islets of langerhans preceding the onset of diabetes
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:11, s. 2503-2517
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of individuals with a high risk of developing type 2 diabetes (T2D) is fundamental for pre-vention. Here, we used a translational approach and prediction criteria to identify changes in DNA methylation visible before the development of T2D. Islets of Langerhans were isolated from genetically identical 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative approach identified 497 differentially expressed and methylated genes (P = 6.42e-09, hypergeometric test) enriched in pathways linked to insulin secretion and extracellular matrix-receptor interaction. The comparison of mouse data with DNA methylation levels of incident T2D cases from the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort, revealed 105 genes with altered DNA methylation at 605 cytosine-phosphate-guanine (CpG) sites, which were associated with future T2D. AKAP13, TENM2, CTDSPL, PTPRN2, and PTPRS showed the strongest predictive potential (area under the receiver operating characteristic curve values 0.62–0.73). Among the new candidates identified in blood cells, 655 CpG sites, located in 99 genes, were differentially methylated in islets of humans with T2D. Using correction for multiple testing detected 236 genes with an altered DNA methylation in blood cells and 201 genes in diabetic islets. Thus, the introduced translational approach identified novel putative biomarkers for early pancreatic islet aberrations preceding T2D.
  •  
7.
  • Yaghootkar, Hanieh, et al. (författare)
  • Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:12, s. 2806-2818
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
  •  
8.
  • Yuan, Shuai, et al. (författare)
  • Is Type 2 Diabetes Causally Associated With Cancer Risk? : Evidence From a Two-Sample Mendelian Randomization Study
  • 2020
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 69:7, s. 1588-1596
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a two-sample Mendelian randomization study to investigate the causal associations of type 2 diabetes mellitus (T2DM) with risk of overall cancer and 22 site-specific cancers. Summary-level data for cancer were extracted from the Breast Cancer Association Consortium and UK Biobank. Genetic predisposition to T2DM was associated with higher odds of pancreatic, kidney, uterine, and cervical cancer and lower odds of esophageal cancer and melanoma but not associated with 16 other site-specific cancers or overall cancer. The odds ratios (ORs) were 1.13 (95% CI 1.04, 1.22), 1.08 (1.00, 1.17), 1.08 (1.01, 1.15), 1.07 (1.01, 1.15), 0.89 (0.81, 0.98), and 0.93 (0.89, 0.97) for pancreatic, kidney, uterine, cervical, and esophageal cancer and melanoma, respectively. The association between T2DM and pancreatic cancer was also observed in a meta-analysis of this and a previous Mendelian randomization study (OR 1.08; 95% CI 1.02, 1.14;P= 0.009). There was limited evidence supporting causal associations between fasting glucose and cancer. Genetically predicted fasting insulin levels were positively associated with cancers of the uterus, kidney, pancreas, and lung. The current study found causal detrimental effects of T2DM on several cancers. We suggest reinforcing the cancer screening in T2DM patients to enable the early detection of cancer.
  •  
9.
  • Baboota, Ritesh, et al. (författare)
  • Emerging Role of Bone Morphogenetic Protein 4 in Metabolic Disorders
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:2, s. 303-312
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone morphogenetic proteins (BMPs) are a group of signaling molecules that belong to the TGF-beta superfamily. Initially discovered for their ability to induce bone formation, BMPs are known to play a diverse and critical array of biological roles. We here focus on recent evidence showing that BMP4 is an important regulator of white/beige adipogenic differentiation with important consequences for thermogenesis, energy homeostasis, and development of obesity in vivo. BMP4 is highly expressed in, and released by, human adipose tissue, and serum levels are increased in obesity. Recent studies have now shown BMP4 to play an important role not only for white/beige/brown adipocyte differentiation and thermogenesis but also in regulating systemic glucose homeostasis and insulin sensitivity. It also has important suppressive effects on hepatic glucose production and lipid metabolism. Cellular BMP4 signaling/action is regulated by both ambient cell/systemic levels and several endogenous and systemic BMP antagonists. Reduced BMP4 signaling/action can contribute to the development of obesity, insulin resistance, and associated metabolic disorders. In this article, we summarize the pleiotropic functions of BMP4 in the pathophysiology of these diseases and also consider the therapeutic implications of targeting BMP4 in the prevention/treatment of obesity and its associated complications.
  •  
10.
  • Ahlqvist, Emma, et al. (författare)
  • Subtypes of type 2 diabetes determined from clinical parameters
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2086-2093
  • Forskningsöversikt (refereegranskat)abstract
    • Type 2 diabetes (T2D) is defined by a single metabolite, glucose, but is increasingly recognized as a highly heterogeneous disease, including individuals with varying clinical characteristics, disease progression, drug response, and risk of complications. Identification of subtypes with differing risk profiles and disease etiologies at diagnosis could open up avenues for personalized medicine and allow clinical resources to be focused to the patients who would be most likely to develop diabetic complications, thereby both im-proving patient health and reducing costs for the health sector. More homogeneous populations also offer increased power in experimental, genetic, and clinical studies. Clinical parameters are easily available and reflect relevant disease pathways, including the effects of both genetic and environmental exposures. We used six clinical parameters (GAD autoantibodies, age at diabetes onset, HbA1c, BMI, and measures of insulin resistance and insulin secretion) to cluster adult-onset diabetes patients into five subtypes. These sub-types have been robustly reproduced in several populations and associated with different risks of complications, comor-bidities, genetics, and response to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group had the highest risk for diabetic kidney disease (DKD) and fatty liver, empha-sizing the importance of insulin resistance for DKD and hepatosteatosis in T2D. In conclusion, we believe that sub-classification using these highly relevant parameters could provide a framework for personalized medicine in diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (29)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (30)
Författare/redaktör
Lernmark, Åke (4)
Franks, Paul W. (4)
Groop, Leif (3)
Ling, Charlotte (3)
Madsen, A. (2)
McCann, A. (2)
visa fler...
Ahlqvist, Emma (2)
Giordano, Giuseppe N ... (2)
Mellgren, G (2)
Perfilyev, Alexander (2)
Johansson, Lars (1)
Zhang, Q. (1)
Peters, A (1)
Korsgren, Olle (1)
Nilsson, Emma (1)
Wikström, Johan, 196 ... (1)
Schwenk, Jochen M. (1)
Bäckhed, Fredrik, 19 ... (1)
Wiklund, Urban (1)
Lyssenko, Valeriya (1)
Tuomi, Tiinamaija (1)
Ahlström, Håkan, 195 ... (1)
Sorrentino, G. (1)
Lindqvist, Andreas (1)
Wollheim, Claes B. (1)
Wierup, Nils (1)
Erlund, Iris (1)
Salomaa, Veikko (1)
Li, Jin (1)
Allison, Matthew (1)
Lind, Lars (1)
Abrahamsson, Niclas, ... (1)
Sundbom, Magnus (1)
Raitakari, Olli T (1)
Ryden, M (1)
Arner, P (1)
Rorsman, Patrik, 195 ... (1)
Spégel, Peter (1)
Koenig, W. (1)
Dermitzakis, Emmanou ... (1)
Eriksson, Jan (1)
Svensson, Maria K (1)
Carlsson, Annelie (1)
Rönn, Tina (1)
Michaelsen, Kim F (1)
Ridderstråle, Martin (1)
Larsson, Susanna C. (1)
Schulze, Matthias B. (1)
Wittenbecher, Clemen ... (1)
North, Kari E. (1)
visa färre...
Lärosäte
Lunds universitet (17)
Göteborgs universitet (7)
Uppsala universitet (6)
Karolinska Institutet (3)
Umeå universitet (2)
Linköpings universitet (2)
visa fler...
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
visa färre...
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy