SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X srt2:(2020-2021);lar1:(lu)"

Search: L773:0012 1797 OR L773:1939 327X > (2020-2021) > Lund University

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahlqvist, Emma, et al. (author)
  • Subtypes of type 2 diabetes determined from clinical parameters
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2086-2093
  • Research review (peer-reviewed)abstract
    • Type 2 diabetes (T2D) is defined by a single metabolite, glucose, but is increasingly recognized as a highly heterogeneous disease, including individuals with varying clinical characteristics, disease progression, drug response, and risk of complications. Identification of subtypes with differing risk profiles and disease etiologies at diagnosis could open up avenues for personalized medicine and allow clinical resources to be focused to the patients who would be most likely to develop diabetic complications, thereby both im-proving patient health and reducing costs for the health sector. More homogeneous populations also offer increased power in experimental, genetic, and clinical studies. Clinical parameters are easily available and reflect relevant disease pathways, including the effects of both genetic and environmental exposures. We used six clinical parameters (GAD autoantibodies, age at diabetes onset, HbA1c, BMI, and measures of insulin resistance and insulin secretion) to cluster adult-onset diabetes patients into five subtypes. These sub-types have been robustly reproduced in several populations and associated with different risks of complications, comor-bidities, genetics, and response to treatment. Importantly, the group with severe insulin-deficient diabetes (SIDD) had increased risk of retinopathy and neuropathy, whereas the severe insulin-resistant diabetes (SIRD) group had the highest risk for diabetic kidney disease (DKD) and fatty liver, empha-sizing the importance of insulin resistance for DKD and hepatosteatosis in T2D. In conclusion, we believe that sub-classification using these highly relevant parameters could provide a framework for personalized medicine in diabetes.
  •  
2.
  • Buzzetti, Raffaella, et al. (author)
  • Management of latent autoimmune diabetes in adults : A consensus statement from an international expert panel
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:10, s. 2037-2047
  • Journal article (peer-reviewed)abstract
    • A substantial proportion of patients with adult-onset diabetes share features of both type 1 diabetes (T1D) and type 2 diabetes (T2D). These individuals, at diagnosis, clinically resemble T2D patients by not requiring insulin treatment, yet they have immunogenetic markers associated with T1D. Such a slowly evolving form of autoimmune diabetes, described as latent autoimmune diabetes of adults (LADA), accounts for 2-12% of all patients with adult-onset diabetes, though they show considerable variability according to their demographics and mode of ascertainment. While therapeutic strategies aim for metabolic control and preservation of residual insulin secretory capacity, endotype heterogeneity within LADA implies a personalized approach to treatment. Faced with a paucity of large-scale clinical trials in LADA, an expert panel reviewed data and delineated one therapeutic approach. Building on the 2020 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) consensus for T2D and heterogeneity within autoimmune diabetes, we propose deviations for LADA from those guidelines. Within LADA, C-peptide values, proxy for b-cell function, drive therapeutic decisions. Three broad categories of random C-peptide levels were introduced by the panel: 1) C-peptide levels <0.3 nmol/L: A multiple-insulin regimen recommended as for T1D; 2) C-peptide values >0.3 and <0.7 nmol/L: Defined by the panel as a gray area in which a modified ADA/EASD algorithm for T2D is recommended; consider insulin in combination with other therapies to modulate β-cell failure and limit diabetic complications; 3) C-peptide values >0.7 nmol/L: Suggests a modified ADA/EASD algorithm as for T2D but allowing for the potentially progressive nature of LADA by monitoring C-peptide to adjust treatment. The panel concluded by advising general screening for LADA in newly diagnosed noninsulin-requiring diabetes and, importantly, that large randomized clinical trials are warranted.
  •  
3.
  • Eliasson, Lena, et al. (author)
  • MicroRNA networks in pancreatic islet cells : Normal function and type 2 diabetes
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:5, s. 804-812
  • Journal article (peer-reviewed)abstract
    • Impaired insulin secretion from the pancreatic β-cells is central in the pathogenesis of type 2 diabetes (T2D), and microRNAs (miRNAs) are fundamental regulatory factors in this process. Differential expression of miRNAs contributes to β-cell adaptation to compensate for increased insulin resistance, but deregulation of miRNA expression can also directly cause β-cell impairment during the development of T2D. miRNAs are small noncoding RNAs that posttranscriptionally reduce gene expression through translational inhibition or mRNA destabilization. The nature of miRNA targeting implies the presence of complex and large miRNA-mRNA regulatory networks in every cell, including the insulin-secreting β-cell. Here we exemplify one such network using our own data on differential miRNA expression in the islets of T2D Goto- Kakizaki rat model. Several biological processes are influenced by multiple miRNAs in the β-cell, but so far most studies have focused on dissecting the mechanism of action of individual miRNAs. In this Perspective we present key islet miRNA families involved in T2D pathogenesis including miR-200, miR-7, miR-184, miR-212/miR-132, and miR-130a/b/miR-152. Finally, we highlight four challenges and opportunities within islet miRNA research, ending with a discussion on how miRNAs can be utilized as therapeutic targets contributing to personalized T2D treatment strategies.
  •  
4.
  • Garcia-Vaz, Eliana, et al. (author)
  • Inhibition of NFAT signaling restores microvascular endothelial function in diabetic mice
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:3, s. 424-435
  • Journal article (peer-reviewed)abstract
    • Central to the development of diabetic macro- and microvascular disease is endothelial dysfunction, which appears well before any clinical sign but, importantly, is potentially reversible. We previously demonstrated that hyperglycemia activates nuclear factor of activated T cells (NFAT) in conduit and medium-sized resistance arteries and that NFAT blockade abolishes diabetes-driven aggravation of atherosclerosis. In this study, we test whether NFAT plays a role in the development of endothelial dysfunction in diabetes. NFAT-dependent transcriptional activity was elevated in skin microvessels of diabetic Akita (Ins21/2) mice when compared with nondiabetic littermates. Treatment of diabetic mice with the NFAT blocker A-285222 reduced NFATc3 nuclear accumulation and NFAT-luciferase transcriptional activity in skin microvessels, resulting in improved microvascular function, as assessed by laser Doppler imaging and iontophoresis of acetylcholine and localized heating. This improvement was abolished by pretreatment with the nitric oxide (NO) synthase inhibitor L-NGnitro-L-arginine methyl ester, while iontophoresis of the NO donor sodium nitroprusside eliminated the observed differences. A-285222 treatment enhanced dermis endothelial NO synthase expression and plasma NO levels of diabetic mice. It also prevented induction of inflammatory cytokines interleukin-6 and osteopontin, lowered plasma endothelin-1 and blood pressure, and improved mouse survival without affecting blood glucose. In vivo inhibition of NFAT may represent a novel therapeutic modality to preserve endothelial function in diabetes.
  •  
5.
  • Herzog, Katharina, et al. (author)
  • Metabolic Effects of Gastric Bypass Surgery : Is It All About Calories?
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:9, s. 2027-2035
  • Journal article (peer-reviewed)abstract
    • Bariatric surgery is an efficient method to induce weight loss and also, frequently, remission of type 2 diabetes (T2D). Unpaired studies have shown bariatric surgery and dietary interventions to differentially affect multiple hormonal and metabolic parameters, suggesting that bariatric surgery causes T2D remission at least partially via unique mechanisms. In the current study, plasma metabolite profiling was conducted in patients with (n = 10) and without T2D (n = 9) subjected to Roux-en-Y gastric bypass surgery (RYGB). Mixed-meal tests were conducted at baseline, after the presurgical very-low-calorie diet (VLCD) intervention, immediately after RYGB, and after a 6-week recovery period. Thereby, we could compare fasted and postprandial metabolic consequences of RYGB and VLCD in the same patients. VLCD yielded a pronounced increase in fasting acylcarnitine levels, whereas RYGB, both immediately and after a recovery period, resulted in a smaller but opposite effect. Furthermore, we observed profound changes in lipid metabolism following VLCD but not in response to RYGB. Most changes previously associated with RYGB were found to be consequences of the presurgical dietary intervention. Overall, our results question previous findings of unique metabolic effects of RYGB and suggest that the effect of RYGB on the metabolite profile is mainly attributed to caloric restriction.
  •  
6.
  • Jahoor, Farook, et al. (author)
  • Metabolomics Profiling of Patients With A-β+ Ketosis-Prone Diabetes During Diabetic Ketoacidosis
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:8, s. 1898-1909
  • Journal article (peer-reviewed)abstract
    • When stable and near-normoglycemic, patients with "A-β+" ketosis-prone diabetes (KPD) manifest accelerated leucine catabolism and blunted ketone oxidation, which may underlie their proclivity to develop diabetic ketoacidosis (DKA). To understand metabolic derangements in A-β+ KPD patients during DKA, we compared serum metabolomics profiles of adults during acute hyperglycemic crises, without (n = 21) or with (n = 74) DKA, and healthy control subjects (n = 17). Based on 65 kDa GAD islet autoantibody status, C-peptide, and clinical features, 53 DKA patients were categorized as having KPD and 21 type 1 diabetes (T1D); 21 nonketotic patients were categorized as having type 2 diabetes (T2D). Patients with KPD and patients with T1D had higher counterregulatory hormones and lower insulin-to-glucagon ratio than patients with T2D and control subjects. Compared with patients withT2D and control subjects, patients with KPD and patients with T1D had lower free carnitine and higher long-chain acylcarnitines and acetylcarnitine (C2) but lower palmitoylcarnitine (C16)-to-C2 ratio; a positive relationship between C16 and C2 but negative relationship between carnitine and β-hydroxybutyrate (BOHB); higher branched-chain amino acids (BCAAs) and their ketoacids but lower ketoisocaproate (KIC)-to-Leu, ketomethylvalerate (KMV)-to-Ile, ketoisovalerate (KIV)-to-Val, isovalerylcarnitine-to-KIC+KMV, propionylcarnitine-to-KIV+KMV, KIC+KMV-to-C2, and KIC-to-BOHB ratios; and lower glutamate and 3-methylhistidine. These data suggest that during DKA, patients with KPD resemble patients with T1D in having impaired BCAA catabolism and accelerated fatty acid flux to ketones-a reversal of their distinctive BCAA metabolic defect when stable. The natural history of A-β+ KPD is marked by chronic but varying dysregulation of BCAA metabolism.
  •  
7.
  • Jönsson, Josefine, et al. (author)
  • Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord Blood DNA Methylation, Which Associates With Body Composition in the Offspring
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:4, s. 854-866
  • Journal article (peer-reviewed)abstract
    • Maternal obesity may lead to epigenetic alterations in the offspring and might thereby contribute to disease later in life. We investigated whether a lifestyle intervention in pregnant women with obesity is associated with epigenetic variation in cord blood and body composition in the offspring. Genome-wide DNA methylation was analyzed in cord blood from 208 offspring from the Treatment of Obese Pregnant women (TOP)-study, which includes pregnant women with obesity randomized to lifestyle interventions comprised of physical activity with or without dietary advice versus control subjects (standard of care). DNA methylation was altered at 379 sites, annotated to 370 genes, in cord blood from offspring of mothers following a lifestyle intervention versus control subjects (false discovery rate [FDR] <5%) when using the Houseman reference-free method to correct for cell composition, and three of these sites were significant based on Bonferroni correction. These 370 genes are overrepresented in gene ontology terms, including response to fatty acids and adipose tissue development. Offspring of mothers included in a lifestyle intervention were born with more lean mass compared with control subjects. Methylation at 17 sites, annotated to, for example, DISC1, GBX2, HERC2, and HUWE1, partially mediates the effect of the lifestyle intervention on lean mass in the offspring (FDR <5%). Moreover, 22 methylation sites were associated with offspring BMI z scores during the first 3 years of life (P < 0.05). Overall, lifestyle interventions in pregnant women with obesity are associated with epigenetic changes in offspring, potentially influencing the offspring's lean mass and early growth.
  •  
8.
  • Lernmark, Åke (author)
  • Etiology of Autoimmune Islet Disease : Timing Is Everything
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:7, s. 1431-1439
  • Journal article (peer-reviewed)abstract
    • Life is about timing.-Carl LewisThe understanding of autoimmune type 1 diabetes is increasing, and examining etiology separate from pathogenesis has become crucial. The components to explain type 1 diabetes development have been known for some time. The strong association with HLA has been researched for nearly 50 years. Genome-wide association studies added another 60+ non-HLA genetic factors with minor contribution to risk. Insulitis has long been known to be present close to clinical diagnosis. T and B cells recognizing β-cell autoantigens are detectable prior to diagnosis and in newly diagnosed patients. Islet autoantibody tests against four major autoantigens have been standardized and used as biomarkers of islet autoimmunity. However, to clarify the etiology would require attention to time. Etiology may be defined as the cause of a disease (i.e., type 1 diabetes) or abnormal condition (i.e., islet autoimmunity). Timing is everything, as neither the prodrome of islet autoimmunity nor the clinical onset of type 1 diabetes tells us much about the etiology. Rather, the islet autoantibody that appears first and persists would mark the diagnosis of an autoimmune islet disease (AID). Events after the diagnosis of AID would represent the pathogenesis. Several islet autoantibodies without (stage 1) or with impaired glucose tolerance (stage 2) or with symptoms (stage 3) would define the pathogenesis culminating in clinical type 1 diabetes. Etiology would be about the timing of events that take place before the first-appearing islet autoantibody.
  •  
9.
  • Li, Qian, et al. (author)
  • Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:3, s. 465-476
  • Journal article (peer-reviewed)abstract
    • Children at increased genetic risk for type 1 diabetes (T1D) after environmental exposures may develop pancreatic islet autoantibodies (IA) at a very young age. Metabolic profile changes over time may imply responses to exposures and signal development of the first IA. Our present research in The Environmental Determinants of Diabetes in the Young (TEDDY) study aimed to identify metabolome-wide signals preceding the first IA against GAD (GADA-first) or against insulin (IAA-first). We profiled metabolomes by mass spectrometry from children's plasma at 3-month intervals after birth until appearance of the first IA. A trajectory analysis discovered each first IA preceded by reduced amino acid proline and branched-chain amino acids (BCAAs), respectively. With independent time point analysis following birth, we discovered dehydroascorbic acid (DHAA) contributing to the risk of each first IA, and γ-aminobutyric acid (GABAs) associated with the first autoantibody against insulin (IAA-first). Methionine and alanine, compounds produced in BCAA metabolism and fatty acids, also preceded IA at different time points. Unsaturated triglycerides and phosphatidylethanolamines decreased in abundance before appearance of either autoantibody. Our findings suggest that IAA-first and GADA-first are heralded by different patterns of DHAA, GABA, multiple amino acids, and fatty acids, which may be important to primary prevention of T1D.
  •  
10.
  • Li, Qian, et al. (author)
  • Plasma Metabolome and Circulating Vitamins Stratified Onset Age of an Initial Islet Autoantibody and Progression to Type 1 Diabetes : the TEDDY Study
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:1, s. 282-292
  • Journal article (peer-reviewed)abstract
    • Children's plasma metabolome, especially lipidome reflects gene regulation and dietary exposures, heralding the development of islet autoantibodies (IA) and type 1 diabetes (T1D). The TEDDY study enrolled 8676 newborns by screening HLA-DR-DQ genotypes at six clinical centers in four countries; profiled metabolome and measured concentrations of ascorbic acid, 25-hydroxyvitamin D (25(OH)D), erythrocyte membrane fatty acids following birth until IA seroconversion under nested case-control design. We grouped children having an initial autoantibody only against insulin (IAA-first) or glutamic acid decarboxylase (GADA-first) by unsupervised clustering of temporal lipidome, identifying a subgroup of children having early onset of each initial autoantibody, i.e., IAA-first by 12 months and GADA-first by 21 months, consistent with population-wide early seroconversion age. Differential analysis showed that infants having reduced plasma ascorbic acid and cholesterol experienced IAA-first earlier, while early onset of GADA-first was preceded by reduced sphingomyelins at infancy. Plasma 25(OH)D prior to either autoantibody was lower in T1D progressors compared to non-progressors, with simultaneous lower diglycerides, lysophosphatidylcholines, triglycerides, alanine before GADA-first. Plasma ascorbic acid and 25(OH)D at infancy were lower in HLA-DR3/DR4 children among IA cases but not in matched controls, implying gene expression dysregulation of circulating vitamins as latent signals for IA or T1D progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view