SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 186X ;lar1:(gih)"

Sökning: L773:0012 186X > Gymnastik- och idrottshögskolan

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hey-Mogensen, M, et al. (författare)
  • Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes.
  • 2010
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 53:9, s. 1976-85
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM/HYPOTHESIS: Studies have suggested a link between insulin resistance and mitochondrial dysfunction in skeletal muscles. Our primary aim was to investigate the effect of aerobic training on mitochondrial respiration and mitochondrial reactive oxygen species (ROS) release in skeletal muscle of obese participants with and without type 2 diabetes. METHODS: Type 2 diabetic men (n = 13) and control (n = 14) participants matched for age, BMI and physical activity completed 10 weeks of aerobic training. Pre- and post-training muscle biopsies were obtained before a euglycaemic-hyperinsulinaemic clamp and used for measurement of respiratory function and ROS release in isolated mitochondria. RESULTS: Training significantly increased insulin sensitivity, maximal oxygen consumption and muscle mitochondrial respiration with no difference between groups. When expressed in relation to a marker of mitochondrial density (intrinsic mitochondrial respiration), training resulted in increased mitochondrial ADP-stimulated respiration (with NADH-generating substrates) and decreased respiration without ADP. Intrinsic mitochondrial respiration was not different between groups despite lower insulin sensitivity in type 2 diabetic participants. Mitochondrial ROS release tended to be higher in participants with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Aerobic training improves muscle respiration and intrinsic mitochondrial respiration in untrained obese participants with and without type 2 diabetes. These adaptations demonstrate an increased metabolic fitness, but do not seem to be directly related to training-induced changes in insulin sensitivity.
  •  
2.
  • Hjeltnes, N, et al. (författare)
  • Regulation of UCP2 and UCP3 by muscle disuse and physical activity in tetraplegic subjects.
  • 1999
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 42:7, s. 826-30
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: The regulation of uncoupling protein 2 and uncoupling protein 3 gene expression in skeletal muscle has recently been the focus of intense interest. Our aim was to determine expression of uncoupling protein 2 and 3 in skeletal muscle from tetraplegic subjects, a condition representing profound muscle inactivity. Thereafter we determined whether exercise training would modify expression of these genes in skeletal muscle.METHODS: mRNA expression of uncoupling protein 2 and 3 was determined using quantitative reverse transcription-polymerase chain-reaction.RESULTS: Expression of uncoupling protein 2 and 3 mRNA was increased in skeletal muscle from tetraplegic compared with able-bodied subjects (3.7-fold p < 0.01 and 4.1-fold, p < 0.05, respectively). A subgroup of four tetraplegic subjects underwent an 8-week exercise programme consisting of electrically-stimulated leg cycling (ESLC, 7 ESLC sessions/week). This training protocol leads to increases in whole body insulin-stimulated glucose uptake and expression of genes involved in glucose metabolism in skeletal muscle from tetraplegic subjects. After ESLC training, uncoupling protein 2 expression was reduced by 62% and was similar to that in able-bodied people. Similarly, ESLC training was associated with a reduction of uncoupling protein 3 expression in skeletal muscle from three of four tetraplegic subjects, however, post-exercise levels remained increased compared with able-bodied subjects.CONCLUSION/INTERPRETATION: Tetraplegia is associated with increased mRNA expression of uncoupling protein 2 and 3 in skeletal muscle. Exercise training leads to normalisation of uncoupling protein 2 expression in tetraplegic subjects. Muscle disuse and physical activity appear to be powerful regulators of uncoupling protein 2 and 3 expression in human skeletal muscle.
  •  
3.
  • Song, X M, et al. (författare)
  • 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice.
  • 2002
  • Ingår i: Diabetologia. - 0012-186X .- 1432-0428. ; 45:1, s. 56-65
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: The 5'AMP-activated protein kinase is an important mediator of muscle contraction-induced glucose transport and a target for pharmacological treatment of Type II (non-insulin-dependent) diabetes mellitus. The 5'AMP-activated protein kinase can be activated by 5-aminoimidazole-4-carboxamide ribonucleoside. We hypothesised that 5-aminoimidazole-4-carboxamide ribonucleoside treatment could restore glucose homeostasis in ob/ob mice.METHODS: Lean and ob/ob mice were given 5-aminoimidazole-4-carboxamide ribonucleoside (1 mg.g body wt(-1).day(-1) s.c) or 0.9 % NaCl (vehicle) for 1-7 days.RESULTS: Short-term 5-aminoimidazole-4-carboxamide ribonucleoside treatment normalised glucose concentrations in ob/ob mice within 1 h, with effects persisting over 4 h. After 1 week of daily injections, 5-aminoimidazole-4-carboxamide ribonucleoside treatment corrected hyperglycaemia, improved glucose tolerance, and increased GLUT4 and hexokinase II protein expression in skeletal muscle, but had deleterious effects on plasma non-esterified fatty acids and triglycerides. Treatment with 5-aminoimidazole-4-carboxamide ribonucleoside increased liver glycogen in fasted and fed ob/ob mice and muscle glycogen in fasted, but not fed ob/ob and lean mice. Defects in insulin-stimulated phosphatidylinositol 3-kinase and glucose transport in skeletal muscle from ob/ob mice were not corrected by 5-aminoimidazole-4-carboxamide ribonucleoside treatment. While ex vivo insulin-stimulated glucose transport was reduced in isolated muscle from ob/ob mice, the 5-aminoimidazole-4-carboxamide ribonucleoside stimulated response was normal.CONCLUSION/INTERPRETATION: The 5-aminoimidazole-4-carboxamide ribonucleoside mediated improvements in glucose homeostasis in ob/ob mice can be explained by effects in skeletal muscle and liver. Due to the apparently deleterious effects of 5-aminoimidazole-4-carboxamide ribonucleoside on the blood lipid profile, strategies to develop tissue-specific and pathway-specific activators of 5'AMP-activated protein kinase should be considered in order to improve glucose homeostasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Fernström, Maria (3)
Zierath, J. R. (2)
Krook, A (1)
Wallberg-Henriksson, ... (1)
Hjeltnes, N (1)
Wang, Li (1)
visa fler...
Sahlin, Kent (1)
Galuska, D (1)
Dela, F (1)
Beck-Nielsen, H. (1)
Song, X. M. (1)
Fiedler, M (1)
Hey-Mogensen, M (1)
Højlund, K (1)
Vind, B F (1)
Ryder, J W (1)
Chibalin, A V (1)
visa färre...
Lärosäte
Karolinska Institutet (2)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy