SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0014 4886 ;lar1:(lnu)"

Sökning: L773:0014 4886 > Linnéuniversitetet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Englund Johansson, Ulrica, et al. (författare)
  • Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections.
  • 2002
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 173:1, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we examined the ability of human neural progenitors from the embryonic forebrain, expanded for up to a year in culture in the presence of growth factors, to respond to environmental signals provided by the developing rat brain. After survival times of up to more than a year after transplantation into the striatum, the hippocampus, and the subventricular zone, the cells were analyzed using human-specific antisera and the reporter gene green fluorescent protein (GFP). From grafts implanted in the striatum, the cells migrated extensively, especially within white matter structures. Neuronal differentiation was most pronounced at the striatal graft core, with axonal projections extending caudally along the internal capsule into mesencephalon. In the hippocampus, cells migrated throughout the entire hippocampal formation and into adjacent white matter tracts, with differentiation into neurons both in the dentate gyrus and in the CA1-3 regions. Directed migration along the rostral migratory stream to the olfactory bulb and differentiation into granule cells were observed after implantation into the subventricular zone. Glial differentiation occurred at all three graft sites, predominantly at the injection sites, but also among the migrating cells. A lentiviral vector was used to transduce the cells with the GFP gene prior to grafting. The reporter gene was expressed for at least 15 weeks and the distribution of the gene product throughout the entire cytoplasmic compartment of the expressing cells allowed for a detailed morphological analysis of a portion of the grafted cells. The extensive integration and differentiation of in vitro-expanded human neural progenitor cells indicate that multipotent progenitors are capable of responding in a regionally specific manner to cues present in the developing rat brain.
  •  
2.
  • Lundberg, Cecilia, et al. (författare)
  • Differentiation of the RN33B Cell Line into Forebrain Projection Neurons after Transplantation into the Neonatal Rat Brain.
  • 2002
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 175:2, s. 370-387
  • Tidskriftsartikel (refereegranskat)abstract
    • The rat neural cell line RN33B has a remarkable ability to undergo region-specific neuronal differentiation after transplantation into the CNS. To further study its neurogenic properties in vivo, we used a recombinant lentiviral vector to genetically label the cells with the Green Fluorescent Protein (GFP) gene before implantation into the striatum/cortex, hippocampus, or mesencephalon of newborn rats. Three weeks after implantation, about 1-2% of the GFP-expressing cells had developed morphologies typical of neurons, astrocytes, or oligodendrocytes, the rest remained as either immature or undifferentiated nestin-positive cells. At 15-17 weeks postgrafting, the immature cells had disappeared in most graft recipients and only cells with neuronal or glial morphologies remained in similar numbers as at 3 weeks. The GFP distributed throughout the expressing cells, revealing fine morphological details, including dendrites with spines and extensive axonal projections. In all forebrain regions, the grafted cells differentiated into neurons with morphologies characteristic for each site, including large numbers of pyramidal-like cells in the cortex and the hippocampus, giving rise to dense projections to normal cortical target regions and to the contralateral hippocampus, respectively. In lower numbers, it was also possible to identify GFP-positive granulelike cells in the hippocampus, as well as densely spiny neurons in the striatum. In the mesencephalon by contrast, cells with astrocytic features predominated. The ability of the grafted RN33B cells to undergo region-specific differentiation into highly specialized types of forebrain projection neurons and establish connections with appropriate targets suggests that cues present in the microenvironment of the neonatal rat brain can effectively guide the development of immature progenitors, also in the absence of ongoing neurogenesis. (c) 2002 Elsevier Science (USA).
  •  
3.
  • Warfvinge, Karin, et al. (författare)
  • Retinal Integration of Grafts of Brain-Derived Precursor Cell Lines Implanted Subretinally into Adult, Normal Rats
  • 2001
  • Ingår i: Experimental Neurology. - : Elsevier. - 0014-4886 .- 1090-2430. ; 169:1, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of in vitro-expanded neural precursor cells or cell lines to differentiate following transplantation has significant implications for current research on central nervous system repair. Recently, interest has been focussed on grafts of such neural precursors implanted also into the eye or retina. Here, we demonstrate with a non-traumatizing subretinal transplantation method, that grafts of the two immortalized brain-derived cell lines C 17-2 (from postnatal mouse cerebellum) and RN33B (from the embryonic rat medullary raphe) survive for at least up to four weeks, after implantation into the adult normal rat retina. For both cell lines, implanted cells gradually integrate into all major retinal cell layers, including the retinal pigment epithelium, and judged by the morphology differentiate into both glial- and neuron-like cells, as shown by thymidine autoradiography, mouse-specific in situ hybridization, and using immunohistochemistry to detect the reporter gene LacZ. Our results suggest that these and other similar neural cell lines could be very useful in the continuos experiments in models of retinal disorders to further assess both the cell replacement and ex vivo gene therapy approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy