SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0014 4886 ;mspu:(researchreview)"

Sökning: L773:0014 4886 > Forskningsöversikt

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fowler, Christopher J, et al. (författare)
  • Modulation of the endocannabinoid system : neuroprotection or neurotoxicity?
  • 2010
  • Ingår i: Experimental Neurology. - : Elsevier. - 0014-4886 .- 1090-2430. ; 224:1, s. 37-47
  • Forskningsöversikt (refereegranskat)abstract
    • There is now a large volume of data indicating that compounds activating cannabinoid CB(1) receptors, either directly or indirectly by preventing the breakdown of endogenous cannabinoids, can protect against neuronal damage produced by a variety of neuronal "insults". Given that such neurodegenerative stimuli result in increased endocannabinoid levels and that animals with genetic deletions of CB(1) receptors are more susceptible to the deleterious effects of such stimuli, a case can be made for an endogenous neuroprotective role of endocannabinoids. However, this is an oversimplification of the current literature, since (a) compounds released together with the endocannabinoids can contribute to the neuroprotective effect; (b) other proteins, such as TASK-1 and PPARalpha, are involved; (c) the CB(1) receptor antagonist/inverse agonist rimonabant has also been reported to have neuroprotective properties in a number of animal models of neurodegenerative disorders. Furthermore, the CB(2) receptor located on peripheral immune cells and activated microglia are potential targets for novel therapies. In terms of the clinical usefulness of targeting the endocannabinoid system for the treatment of neurodegenerative disorders, data are emerging, but important factors to be considered are windows of opportunity (for acute situations such as trauma and ischemia) and the functionality of the target receptors (for chronic neurodegenerative disorders such as Alzheimer's disease).
  •  
2.
  • Hampel, Harald, et al. (författare)
  • Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.
  • 2010
  • Ingår i: Experimental neurology. - : Elsevier BV. - 1090-2430 .- 0014-4886. ; 223:2, s. 334-46
  • Forskningsöversikt (refereegranskat)abstract
    • Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer's disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.
  •  
3.
  • Komitova, Mila, 1974, et al. (författare)
  • On neural plasticity, new neurons and the postischemic milieu: An integrated view on experimental rehabilitation
  • 2006
  • Ingår i: EXPERIMENTAL NEUROLOGY. - : Elsevier BV. - 0014-4886. ; 199:1, s. 42-55
  • Forskningsöversikt (refereegranskat)abstract
    • This review discusses actual and potential contributors to functional improvement after stroke injuries. Topics that will be covered are neuronal re-organization and sprouting, neural stem/progenitor cell activation and neuronal replacement, as well as the neuronal milieu defined by glia, inflammatory cells and blood vessel supply. It is well established that different types of neuronal plasticity ultimately lead to post-stroke recovery. However, an untapped potential which only recently has started to be extensively explored is neuronal replacement through endogenous or exogenous resources. Major experimental efforts are needed to achieve progress in this burgeoning area. The review stresses the importance of applying neurodevelopmental principles as well as performing a characterization of the role of the postischemic milieu when studying adult brain neural stem/progenitor cells. Integrated and multifaceted experimentation, incorporating actual and possible poststroke function modulators, will be necessary in order to determine future strategies that will ultimately enable considerable progress in the field of neurorehabilitation.
  •  
4.
  • Li, Jia-Yi, et al. (författare)
  • Axonopathy in Huntington's disease.
  • 2013
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 246:Aug 19, s. 62-71
  • Forskningsöversikt (refereegranskat)abstract
    • Personality changes, psychiatric disturbances and cognitive abnormalities frequently characterise the prodromal phase in Huntington's disease (HD), a devastating monogenic neurodegenerative disorder manifesting with abnormal motor movements and early death. Selective loss of medium-sized spiny striatal neurons has been related to the onset of motor symptoms but it does not completely explain the psychiatric and cognitive changes that often precede motor abnormalities. Here we review the evidence of synaptic and axonal dysfunction and neurite dystrophy preceding neuronal loss in HD patients and models. We discuss possible mechanisms leading to dysfunction of the axonal and synaptic compartments and identify potential novel targets for effective therapeutic intervention.
  •  
5.
  • Swartling, Fredrik J., 1975-, et al. (författare)
  • Signals that regulate the oncogenic fate of neural stem cells and progenitors
  • 2014
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 260, s. 56-68
  • Forskningsöversikt (refereegranskat)abstract
    • Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors.
  •  
6.
  • Ulusoy, Ayse, et al. (författare)
  • In vivo gene delivery for development of mammalian models for Parkinson's disease
  • 2008
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 209:1, s. 89-100
  • Forskningsöversikt (refereegranskat)abstract
    • During the last decade, identification of the genes involved in familial forms of Parkinson's disease (PD) has advanced our understanding of the mechanisms underlying the development of different aspects of PD. However the available animal models still remain as the main limiting factor for the development of neuroprotective therapies that can halt the progression of the disease, through which we wish to provide a better quality of life for the PD patients. Here, we review the recently developed animal models based on overexpression of PD-associated genes using recombinant viral vectors. Recombinant adeno-associated viral vectors, in particular, have been very useful in targeting the nigral dopamine neurons both in the rodent and the primate brain. In order to provide insights into the establishment of these models in the laboratory, we will not only give an overview of the results from these studies but also cover practical issues related to the production and handling of the viral vectors, which are critical for the successful application of this approach.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy