SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 8901 OR L773:1365 2664 ;lar1:(su)"

Sökning: L773:0021 8901 OR L773:1365 2664 > Stockholms universitet

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roquer-Beni, Laura, et al. (författare)
  • Management-dependent effects of pollinator functional diversity on apple pollination services : A response-effect trait approach
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:12, s. 2843-2853
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional traits mediate the response of communities to disturbances (response traits) and their contribution to ecosystem functions (effect traits). To predict how anthropogenic disturbances influence ecosystem services requires a dual approach including both trait concepts. Here, we used a response–effect trait conceptual framework to understand how local and landscape features affect pollinator functional diversity and pollination services in apple orchards.We worked in 110 apple orchards across four European regions. Orchards differed in management practices. Low-intensity (LI) orchards were certified organic or followed close-to-organic practices. High-intensity (HI) orchards followed integrated pest management practices. Within each management type, orchards encompassed a range of local (flower diversity, agri-environmental structures) and landscape features (orchard and pollinator-friendly habitat cover). We measured pollinator visitation rates and calculated trait composition metrics based on 10 pollinator traits. We used initial fruit set as a measure of pollination service.Some pollinator traits (body size and hairiness) were negatively related to orchard cover and positively affected by pollinator-friendly habitat cover. Bee functional diversity was lower in HI orchards and decreased with increased landscape orchard cover. Pollination service was not associated with any particular trait but increased with pollinator trait diversity in LI orchards. As a result, LI orchards with high pollinator trait diversity reached levels of pollination service similar to those of HI orchards.Synthesis and applications. Pollinator functional diversity enables pollinator communities to respond to agricultural intensification and to increase pollination function. Our results show that efforts to promote biodiversity provide greater returns in low-intensity than in high-intensity orchards. The fact that low-intensity orchards with high pollinator functional diversity reach levels of pollination services similar to those of high-intensity orchards provides a compelling argument for the conversion of high-intensity into low-intensity farms.
  •  
2.
  • Rader, Romina, et al. (författare)
  • Organic farming and heterogeneous landscapes positively affect different measures of plant diversity
  • 2014
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 51:6, s. 1544-1553
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing landscape heterogeneity and organic farming practices are known to enhance species richness in agroecosystems. However, little is known about the consequences of these management options on other biodiversity components such as community composition, phylogenetic structure and functional diversity which may be more closely linked to ecosystem functioning. We surveyed semi-natural plant communities within the uncultivated field margins of 18 arable farms in Skane, south Sweden. We investigated how taxonomic, phylogenetic and functional diversity responds to landscape heterogeneity (presence of semi-natural habitat) and farm management intensity (organic vs. conventional farming). Plant species richness and functional diversity metrics all responded positively to landscape heterogeneity, with the strongest effect occurring on conventional farms. Community composition differed with farm management, and mean phylogenetic relatedness, an indicator of phylogenetic structure, was significantly higher on the field margins of organic compared to conventional farms. Individual plant functional groups themselves responded in unique ways to land management and landscape heterogeneity.Synthesis and applications. Management strategies that promote the conservation of heterogeneous landscapes (i.e. a higher proportion of semi-natural habitats) and organic farm management practices are important for maintaining plant phylogenetic, functional and taxonomic diversity in agroecosystems. Accommodating various forms of diversity is important to ensure that ecosystems have the greatest possible array of species ecologies'. Such measures will help to improve the capacity of these ecosystems to provide multiple ecosystem functions, including the sustaining and regulating services of benefit to people. Management strategies that promote the conservation of heterogeneous landscapes (i.e. a higher proportion of semi-natural habitats) and organic farm management practices are important for maintaining plant phylogenetic, functional and taxonomic diversity in agroecosystems. Accommodating various forms of diversity is important to ensure that ecosystems have the greatest possible array of species ecologies'. Such measures will help to improve the capacity of these ecosystems to provide multiple ecosystem functions, including the sustaining and regulating services of benefit to people.
  •  
3.
  • Brunet, Jörg, et al. (författare)
  • Immigration credit of temperate forest herbs in fragmented landscapes—Implications for restoration of habitat connectivity
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:10, s. 2195-2206
  • Tidskriftsartikel (refereegranskat)abstract
    • In many agricultural landscapes, it is important to restore networks of forests to provide habitat and stepping stones for forest specialist taxa. More knowledge is, however, needed on how to facilitate the immigration of such taxa in restored forest patches. Here, we present the first chronosequence study to quantify the dynamics of immigration credits of forest specialist plants in post-arable forest patches.We studied the distribution of herbaceous forest specialist plant species in 54 post-arable broadleaved forest patches along gradients of age (20–140 years since forest establishment), distance from ancient forest (0–2,600 m) and patch area (0.5–9.6 ha). With linear mixed models, we estimated the effects of these factors on species richness, patch means of four dispersal-related plant traits and with generalized linear models on the occurrence of 20 individual species.Post-arable forest patch age and spatial isolation from ancient forest, but not patch size, were important predictors for species richness of forest specialists, suggesting that also small patches are valuable for habitat connectivity. Compared to species richness in ancient forest stands, the immigration credit was reduced by more than 90% after 80 years in post-arable forest patches contiguous to ancient forest compared to 40% after 80 years and 60% after 140 years in isolated patches (at least 100 m to next forest). Tall-growing species with adaptations to long-distance dispersal were faster colonizers, whereas species with heavy diaspores and clonal growth were slower to colonize.Synthesis and applications. We show that post-arable oak plantations have a high potential for restoration of forest herb vegetation. Dispersal-related plant traits play a key role in explaining interspecific differences among forest specialists. To facilitate forest herb immigration across all functional groups in agricultural landscapes, we suggest to create clusters of relatively small new forest patches nearby older forest with source populations.
  •  
4.
  • Yamaura, Yuichi, et al. (författare)
  • From nature reserve to mosaic management : Improving matrix survival, not permeability, benefits regional populations under habitat loss and fragmentation
  • 2022
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 59:6, s. 1472-1483
  • Tidskriftsartikel (refereegranskat)abstract
    • Although matrix improvement in fragmented landscapes is a promising conservation measure, matrix permeability (willingness of an organism to enter the matrix) and movement survival in the matrix are usually aggregated. Consequently, it is unknown which matrix property needs to be improved. It also remains unclear whether matrix upgrading from dispersal passage to providing reproduction opportunities has large conservation benefits and whether there are interactive effects between habitat and matrix management.We examined matrix effects on regional populations across a gradient of habitat loss and fragmentation using simulation experiments that integrated demographic processes and movement modelling based on circuit theory. We separately modified the levels of matrix permeability and movement survival to evaluate their individual effects. We also altered the amount and configuration of not only habitat but also improved matrix to assess their effects on population vital rates (size, survival and density).In binary landscapes comprising habitat and unimproved matrix, matrix movement survival had larger effects on population vital rates than matrix permeability. Increasing movement survival increased vital rates, yet, increasing matrix permeability decreased vital rates. Increased permeability required corresponding increased movement survival to offset potential negative population outcomes.When subsets of the matrix functioning as dispersal passage only (where no reproduction opportunities existed) were improved, increasing matrix permeability but holding movement survival constant reduced all vital rates, especially with increasing habitat fragmentation. In contrast, when movement survival increased, vital rates increased given strong habitat fragmentation. The benefits of upgrading dispersal passage to provide reproduction opportunities for population survival were greatest when habitat amount was moderate. We also found synergetic effects between amounts of habitat and improved matrix, and the benefits of matrix improvement were promoted when improvement was achieved in a spatially aggregated manner.Synthesis and applications. Matrix improvement and connectivity modelling aimed at increasing movement survival will likely bring larger conservation benefits than those for improving permeability alone. Buffering and connecting habitat remnants with improved matrix could provide benefits as long as movement survival is increased. Simultaneous implementation of habitat management and matrix improvement would yield synergistic conservation benefits.
  •  
5.
  • Zewdie, Beyene, 1983-, et al. (författare)
  • Plant biodiversity declines with increasing coffee yield in Ethiopia's coffee agroforests
  • 2022
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 59:5, s. 1198-1208
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical agroforestry systems provide farmers with resources for their livelihoods, but are also well-recognized as refuges for biodiversity. However, the relationship between yield and biodiversity might be negative in these systems, reflecting a potential trade-off between managing for increased yield or biodiversity. The potential for synergies will depend partly on the shape of the biodiversity–yield relationship, where a concave relationship suggests a faster decline in biodiversity with increasing yields than a linear or convex shape.We studied the relationship between biodiversity (plant species richness and composition) and coffee yield along a gradient of management in south-western Ethiopia, coffee's native range. We inventoried species richness and community compoasition of woody plants, herbaceous plants and bryophytes at 60 sites. We also measured coffee management-related variables and assessed coffee yield for 3 consecutive years at each site.Species richness of woody plants had a concave relationship with coffee yield, that is, tree richness declined fast initially before levelling out at higher yields, whereas there was no relationship between coffee yield and species richness of herbaceous plants or bryophytes. Species composition of woody plants, herbaceous plants and bryophytes all had a concave relationship with coffee yield.From a methodological perspective, we found that multi-year data on yield were necessary to reliably assess the relationship between biodiversity and yield, and that the number of coffee shrubs or coffee dominance were poor proxies for yield when trying to capture the biodiversity–yield relationship.Synthesis and applications. The concave relationship between biodiversity components (species richness and composition) and yield suggests that there is a strong conflict between the goals of increasing production and conserving biodiversity. However, it is important to recognize that this pattern is largely driven by the very low-yielding sites in natural forests. Here, even minor intensification of coffee management seems to rapidly erode biodiversity. Along the rest of the productivity gradient, there was generally no negative relationship between yield and biodiversity, implying opportunities for developing strategies for increasing yields without biodiversity loss.
  •  
6.
  • Allen, Craig R., et al. (författare)
  • Quantifying spatial resilience
  • 2016
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 53:3, s. 625-635
  • Forskningsöversikt (refereegranskat)abstract
    • 1. Anthropogenic stressors affect the ecosystems upon which humanity relies. In some cases when resilience is exceeded, relatively small linear changes in stressors can cause relatively abrupt and nonlinear changes in ecosystems. 2. Ecological regime shifts occur when resilience is exceeded and ecosystems enter a new local equilibrium that differs in its structure and function from the previous state. Ecological resilience, the amount of disturbance that a system can withstand before it shifts into an alternative stability domain, is an important framework for understanding and managing ecological systems subject to collapse and reorganization. 3. Recently, interest in the influence of spatial characteristics of landscapes on resilience has increased. Understanding how spatial structure and variation in relevant variables in landscapes affects resilience to disturbance will assist with resilience quantification, and with local and regional management. 4. Synthesis and applications. We review the history and current status of spatial resilience in the research literature, expand upon existing literature to develop a more operational definition of spatial resilience, introduce additional elements of a spatial analytical approach to understanding resilience, present a framework for resilience operationalization and provide an overview of critical knowledge and technology gaps that should be addressed for the advancement of spatial resilience theory and its applications to management and conservation.
  •  
7.
  • Angerbjörn, Anders, et al. (författare)
  • Carnivore conservation in practice : replicatedmanagement actions on a large spatial scale
  • 2013
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 50:1, s. 59-67
  • Tidskriftsartikel (refereegranskat)abstract
    • More than a quarter of the world’s carnivores are threatened, often due to multiple andcomplex causes. Considerable research efforts are devoted to resolving the mechanisms behindthese threats in order to provide a basis for relevant conservation actions. However, evenwhen the underlying mechanisms are known, specific actions aimed at direct support for carnivoresare difficult to implement and evaluate at efficient spatial and temporal scales.2. We report on a 30-year inventory of the critically endangered Fennoscandian arctic foxVulpes lagopus L., including yearly surveys of 600 fox dens covering 21 000 km2. These surveysshowed that the population was close to extinction in 2000, with 40–60 adult animalsleft. However, the population subsequently showed a fourfold increase in size.3. During this time period, conservation actions through supplementary feeding and predatorremoval were implemented in several regions across Scandinavia, encompassing 79% of thearea. To evaluate these actions, we examined the effect of supplemental winter feeding andred fox control applied at different intensities in 10 regions. A path analysis indicated that47% of the explained variation in population productivity could be attributed to lemmingabundance, whereas winter feeding had a 29% effect and red fox control a 20% effect.4. This confirms that arctic foxes are highly dependent on lemming population fluctuationsbut also shows that red foxes severely impact the viability of arctic foxes. This study also highlightsthe importance of implementing conservation actions on extensive spatial and temporalscales, with geographically dispersed actions to scientifically evaluate the effects. We note thatpopulation recovery was only seen in regions with a high intensity of management actions.5. Synthesis and applications. The present study demonstrates that carnivore populationdeclines may be reversed through extensive actions that target specific threats. Fennoscandianarctic fox is still endangered, due to low population connectivity and expected climate impactson the distribution and dynamics of lemmings and red foxes. Climate warming is expected tocontribute to both more irregular lemming dynamics and red fox appearance in tundra areas;however, the effects of climate change can be mitigated through intensive managementactions such as supplemental feeding and red fox control.
  •  
8.
  • Filbee-Dexter, Karen, et al. (författare)
  • Quantifying ecological and social drivers of ecological surprise
  • 2018
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 55:5, s. 2135-2146
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. A key challenge facing ecologists and ecosystem managers is understanding what drives unexpected shifts in ecosystems and limits the effectiveness of human interventions. Research that integrates and analyses data from natural and social systems can provide important insight for unravelling the complexity of these dynamics. It is, therefore, a critical step towards the development of evidence-based, whole-system management approaches.2. To examine our ability to influence ecosystems that are behaving in unexpected ways, we explore three prominent cases of ecological surprise. We captured the social-ecological systems (SES) using key variables and interactions from Ostrom's SES framework, which integrates broader ecosystem processes (e.g. climate, connectivity), management variables (e.g. quotas, restrictions, monitoring), resource use behaviours (e.g. harvesting) and the resource unit (e.g. trees, fish, clean water) being managed.3. Structural equation modelling revealed that management interventions often influenced resource use behaviours (e.g. rules and limits strongly affected harvest or pollution), but they did not have a significant effect on the abundance of the managed resource. Instead, most resource variability was related to ecological processes and feedbacks operating at broader spatial or temporal scales than management interventions, which locked the resource system into the degraded state.4. Synthesis and applications. Mismatch between the influence of management systems and ecosystem processes can limit the effectiveness of human interventions during periods of ecological surprise. Management strategies should shift from a conventional focus on removal or addition of a single resource towards solutions that influence the broader ecosystem. Operationalizing Ostrom’s framework to quantitatively analyse social‐ecological systems using structural equation models shows promise for testing solutions to navigate these events.
  •  
9.
  • Jakobsson, Simon, et al. (författare)
  • The importance of trees for woody pasture bird diversity and effects of the European Union's tree density policy
  • 2017
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 54:6, s. 1638-1647
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Recent reforms in the Common Agricultural Policy aim for a greening of the subsidy system with potential improvements for biodiversity conservation. As part of that process, the tree density limit for pastures to qualify for European Union subsidies has been increased from 50 to 100 trees per hectare. However, recent studies show that the high biodiversity values of these habitats may be threatened by these limits, highlighting the need for policy improvements. Still, little is known about the direct effects of tree density limitations on bird communities in woody pastures. 2. We investigated how bird diversity and species composition are affected by tree density in 49 Swedish woody pastures along a gradient of 4-214 trees per hectare. We recorded bird communities, tree density and stand structure estimates in the field and estimated forest cover in the surrounding landscape from aerial photos. Using generalised additive models and redundancy analysis, we analysed how bird territorial species richness, bird abundance and species composition are affected by tree density, taking into account other local and landscape scale explanatory variables. 3. Tree density had a significant positive effect on bird species richness at low tree densities and species richness saturated at approximately 50 trees per hectare. Shrub density had a significant positive linear effect on both bird species richness and abundance. Tree and shrub density were also the major drivers of bird community composition, with secondary effects of tree species diversity and landscape forest cover. 4. Policy implications. Our results show that tree density is not the limiting factor, but rather a driver of bird diversity and species composition in woody pastures and that tree density limits may fail to capture the whole range of biological values. To improve policy recommendations, we therefore stress the importance of considering additional social-ecological drivers associated to management quality, e.g. taking into account moral and cultural motivations among farmers, to preserve biodiversity in woody pastures.
  •  
10.
  • Kratina, Pavel, et al. (författare)
  • Human-induced biotic invasions and changes in plankton interaction networks
  • 2014
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 51:4, s. 1066-1074
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Pervasive and accelerating changes to ecosystems due to human activities remain major sources of uncertainty in predicting the structure and dynamics of ecological communities. Understanding which biotic interactions within natural multitrophic communities are weakened or augmented by invasions of non-native species in the context of other environmental pressures is needed for effective management. 2. We used multivariate autoregressive models with detailed time-series data from largely freshwater and brackish regions of the upper San Francisco Estuary to assess the topology, direction and strength of trophic interactions following major invasions and establishment of non-native zooplankton in the early 1990s. We simultaneously compared the effects of fish and clam predation, environmental temperature and salinity intrusion using time-series data from > 60 monitoring locations spanning more than three decades. 3. We found changes in the networks of biotic interactions in both regions after the major zooplankton invasions. Our results imply an increased pressure on native herbivores; intensified negative interactions between herbivores and omnivores; and stronger bottom-up influence of juvenile copepods but weaker influence of phytoplankton as a resource for higher trophic levels following the invasions. We identified salinity intrusion as a primary pressure but showed relatively stronger importance of biotic interactions for understanding the dynamics of entire communities. 4. Synthesis and applications. Our findings highlight the dynamic nature of biotic interactions and provide evidence of how simultaneous invasions of exotic species may alter interaction networks in diverse natural ecosystems over large spatial and temporal scales. Efforts to restore declining fish stocks may be in vain without fully considering the trophic dynamics that limit the flow of energy to target populations. Focusing on multitrophic interactions that may be threatened by invasions rather than a limited focus on responses of individual species or diversity is likely to yield more effective management strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy