SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 8901 OR L773:1365 2664 ;pers:(Sundblad Göran)"

Sökning: L773:0021 8901 OR L773:1365 2664 > Sundblad Göran

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergström, Ulf, et al. (författare)
  • Evaluating eutrophication management scenarios in the Baltic Sea using species distribution modelling
  • 2013
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 1365-2664 .- 0021-8901. ; 50:3, s. 680-690
  • Tidskriftsartikel (refereegranskat)abstract
    • Eutrophication is severely affecting species distributions and ecosystem functioning in coastal areas. Targets for eutrophication reduction have been set in the Baltic Sea Action Plan (BSAP) using Secchi depth, a measure of water transparency, as the main status indicator. Despite the high economic costs involved, the potential effects of this political decision on key species and habitats have not been assessed. In a case study including species central to coastal ecosystem functioning, we modelled the effects of changing Secchi depth on the distribution of bladderwrack Fucus vesiculosus and eelgrass Zostera marina vegetation as well as recruitment areas of the main predatory fish species, perch Perca fluviatilis and pikeperch Sander lucioperca. Specifically, we explored the effects of changing Secchi depth on species distributions under a set of scenarios based on the BSAP, using three fundamentally different modelling techniques: maximum entropy, generalized additive and random forest modelling. Improved Secchi depth (reduced eutrophication) was predicted to cause a substantial increase in the distribution of bladderwrack, while the distribution of eelgrass remained largely unaffected. For the fish, a large increase in perch recruitment areas was predicted and a concurrent decrease in recruitment areas of pikeperch. These changes are likely to have effects on biodiversity and ecosystem services. The three modelling methods exposed differences in the quantitative predictions for species with a weaker coupling to Secchi depth. Qualitatively, however, the results were consistent for all species. Synthesis and applications. We show how ecological effects of environmental policies can be evaluated in an explicit spatial context using species distribution modelling. The model-specific responses to changes in eutrophication status emphasize the importance of using ensemble modelling for exploring how species distributions may respond to alternative management regimes. A pronounced difference in response between species suggests that eutrophication mitigation will have consequences for ecosystem functioning, and thus ecosystem goods and services, by inducing changes in the simple food webs of the Baltic Sea. These model predictions form a basis for spatially explicit cost-benefit estimates under different scenarios, providing valuable information for both decision-makers and the wider society.
  •  
2.
  • Sundblad, Göran, et al. (författare)
  • Ecological coherence of Marine Protected Area networks : A spatial assessment using species distribution models
  • 2011
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 48:1, s. 112-120
  • Tidskriftsartikel (refereegranskat)abstract
    • The juvenile stages of fish are often dependent on specific habitat types for their survival. Protecting these habitats may be crucial for maintaining strong adult stocks. The Natura 2000 network of the European Union offers protection of marine habitats that are essential for the recruitment of many fish species. By protecting these critical habitats the network may be important for maintaining the stocks of these fish species. 2.We present a spatially explicit, GIS-based, assessment of two important components of the ecological coherence of Marine Protected Area (MPA) networks: representativity and connectivity. Representativity can be measured as the proportion of each conservation feature that is protected, whereas connectivity assesses the spatial configuration of the network. We apply these analyses to study the ecological coherence of the Natura 2000 network in a 30 000-km2 archipelago in the Baltic Sea, with respect to a coastal fish assemblage and associated habitats. The analyses are based on fish distribution maps that have been constructed by statistically relating life stage specific occurrence to environmental variables, and thereafter making spatial predictions based on maps of the environmental variables. 3.The map-based analyses show that both the representativity and the connectivity of the network are poor with respect to the studied fish species. In total, 3.5% (11 km2) of the assemblage recruitment habitat was protected and 48% of the potentially connected habitats were included in the MPA network. 4.The assessment explicitly identified geographical areas, visually communicated using maps, where the network should be improved to ensure ecological coherence. 5.Synthesis and applications.Many MPA networks around the world, such as the Natura 2000 network in Europe, have recently come into effect. Establishment of the networks has often been governed by opportunity rather than by strict ecological analyses, primarily because distribution maps of species and habitats have been unavailable. Map-based assessments of the strengths and weaknesses of evolving MPA networks, such as the one presented here, are needed in adaptive management. They can provide an efficient tool for visualising and communicating the results to stakeholders and policy makers in the process of working towards ecological coherence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy