SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 9150 ;lar1:(his)"

Sökning: L773:0021 9150 > Högskolan i Skövde

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krettek, Alexandra, 1968-, et al. (författare)
  • Expression of PDGF receptors and ligand-induced migration of partially differentiated human monocyte-derived macrophages. Influence of IFN-gamma and TGF-beta
  • 2001
  • Ingår i: Atherosclerosis. - : Elsevier. - 0021-9150 .- 1879-1484. ; 156:2, s. 267-275
  • Tidskriftsartikel (refereegranskat)abstract
    • In the early atherosclerotic lesion, monocytes accumulate at sites of inflammation and endothelial injury. Platelet-derived growth factor (PDGF), produced for example by macrophages, is a chemoattractant for smooth muscle cells and possibly also for macrophages. During early differentiation into macrophages, human monocytes (early hMDM) showed lower expression of PDGF alpha-receptor (PDGF-Ralpha) than beta-receptor (PDGF-Rbeta) mRNA. Early hMDM showed increased random motility (chemokinesis) in the presence of PDGF of the long (BB(L)) but not short (BB(S)) B-chain homodimer. Neither PDGF-AA(S) nor PDGF-AA(L) affected early hMDM motility. Since increased cytokine levels accompany inflammation, the influence of interferon-gamma (IFN-gamma) and transforming growth factor-beta (TGF-beta) on PDGF-R expression and migratory response were studied. Only PDGF-Ralpha mRNA was highly upregulated by IFN-gamma. TGF-beta only had minor effects on receptor mRNAs. Upregulation of PDGF-Ralpha levels by IFN-gamma was accompanied by significantly increased migration (chemotaxis) towards PDGF-AA(L) only. Consequently, IFN-gamma modulates PDGF-Rs expression in early hMDM and, subsequently, the chemotactic activity of PDGF-AA(L) on IFN-gamma-stimulated early hMDM. This suggests that PDGF-AA(L) may be involved in attracting activated monocytes to sites of inflammation and injury.
  •  
2.
  • Hägg, Daniel, 1974, et al. (författare)
  • Augmented levels of CD44 in macrophages from atherosclerotic subjects: a possible IL-6-CD44 feedback loop?
  • 2007
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 190:2, s. 291-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell-adhesion molecule CD44 likely participates in atherosclerosis development. We have shown previously that pro-inflammatory cytokines affect CD44 expression. Therefore, this work examined the role of elevated CD44 levels in human macrophages. Macrophages from human atherosclerotic subjects (n=15) showed elevated levels of CD44 transcript and protein (1.5-fold) compared to matched controls (n=15) (P=0.050 and 0.044, respectively). To test whether genetic factors influence CD44 expression, two single nucleotide polymorphisms in the CD44 gene were analyzed but these were not associated with coronary artery disease. We also examined the potential connection between plasma cytokine levels and CD44 expression. In atherosclerotic subjects, elevated CD44 expression correlates (P=0.012) with enhanced macrophage IL-6 secretion (3.13+/-2.5 pg/mL versus 0.32+/-0.16 pg/mL in controls, P=0.021). Additionally, CD44-deficient mice exhibit less circulating IL-6 than wild-type controls (9.8+/-0.7 pg/mL versus 14.3+/-0.7 pg/mL; P=0.032). Furthermore, IL-6 augments CD44 expression in primary human macrophages after 24 h (P=0.038) and 48 h (P=0.015). Taken together, our data show an IL-6-CD44 feedback loop in macrophages. Such a positive feedback loop may aggravate atherosclerosis development.
  •  
3.
  • Morelli, Paula I, et al. (författare)
  • IFNgamma regulates PDGF-receptor alpha expression in macrophages, THP-1 cells, and arterial smooth muscle cells.
  • 2006
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 184:1, s. 39-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The recruitment of monocyte-derived macrophages (MDMs) and arterial smooth muscle cells (ASMCs) contributes to inflammation and development of intimal hyperplasia during atherosclerosis. Platelet-derived growth factor (PDGF) is a potent mitogen for SMC, signalling through PDGF-receptor subunits alpha (Ralpha) and beta (Rbeta). We have previously found that interferon gamma (IFNgamma) upregulates PDGF-Ralpha mRNA expression in human MDM (hMDM) which causes an increased migration towards PDGF. In the present study, we found that IFNgamma mediated an upregulation of PDGF-Ralpha mRNA also in THP-1 cells. The induction of PDGF-Ralpha in both hMDM and THP-1 cells was caused by STAT1 binding to the PDGF-Ralpha promoter. In human ASMCs, IFNgamma again stimulated a transient STAT1-binding to the PDGF-Ralpha promoter. However, this was not followed by an upregulation of PDGF-Ralpha mRNA. IFNgamma-stimulation resulted in augmented expression of PDGF-Ralpha protein in differentiated hMDM. Early hMDM only expressed an immature and not fully glycosylated form of the PDGF-Ralpha protein. In contrast, THP-1 cells did not synthesize PDGF-Ralpha protein, implying further posttranscriptional inhibition. Our results contribute to a better understanding of the complex regulation of PDGF-Ralpha expression and how proinflammatory factors may contribute to PDGF-related hyperplasia in vascular diseases.
  •  
4.
  • Sjöberg, Sara, 1979, et al. (författare)
  • CD44-deficiency on hematopoietic cells limits T-cell number but does not protect against atherogenesis in LDL receptor-deficient mice
  • 2009
  • Ingår i: Atherosclerosis. - : Elsevier. - 0021-9150 .- 1879-1484. ; 206:2, s. 369-374
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Vascular and inflammatory cells express adhesion molecule CD44. We demonstrated previously that enhanced CD44 localizes in human atherosclerotic lesions. Apolipoprotein E/cd44 double-deficient mice and apolipoprotein E-deficient mice transplanted with CD44-deficient bone marrow (BM) exhibit reduced atherosclerosis. Since CD44 is a novel factor in atherogenesis, it is imperative that it is investigated in more than one animal model to conclusively determine its role in this particular disease pathology. To test the hypothesis that CD44 expressed by hematopoietic cells plays a critical role in atherogenesis in the low density lipoprotein (LDL) receptor-deficient mouse model, we performed BM reconstitution experiments.METHODS: Lethally irradiated LDL receptor-deficient mice were transplanted with either CD44-deficient or wild-type BM. Beginning 10 weeks after successful reconstitution, mice consumed a cholesterol-enriched atherogenic diet for 6 or 11 weeks.RESULTS: Surprisingly, CD44-deficiency on BM-derived inflammatory cells did not affect lesion size. Additionally, neither group displayed differences in smooth muscle cell, macrophage, collagen, or elastin content as well as lipoprotein levels. However, lesions in CD44-deficient BM-recipient mice contained fewer T-cells compared to wild-type BM mice. Interestingly, CD44-deficient T-cells expressed less chemokine receptor-5 mRNA. Furthermore, in vivo leukocyte adhesion decreased in CD44-deficient mice compared to wild-type mice.CONCLUSION: This study surprisingly revealed that atherogenesis does not require CD44 expression on hematopoietic cells in the LDL receptor-deficient mouse model. However, CD44 promotes T-cell recruitment, downregulates chemokine receptor-5, and participates critically in leukocyte adhesion in vivo. Consequently, the anti-atherogenic role of CD44 may require CD44-deficiency on cell types other than inflammatory cells in the LDL receptor-deficient mouse model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy