SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 9673 ;pers:(Enmark Martin 1984)"

Sökning: L773:0021 9673 > Enmark Martin 1984

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bagge, Joakim, et al. (författare)
  • Impact of stationary-phase pore size on chromatographic performance using oligonucleotide separation as a model
  • 2020
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1634, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • A combined experimental and theoretical study was performed to understand how the pore size of packing materials with pores 60-300 angstrom in size affects the separation of 5-50-mer oligonucleotides. For this purpose, we developed a model in which the solutes were described as thin rods to estimate the accessible surface area of the solute as a function of the pore size and solute size. First, an analytical investigation was conducted in which we found that the selectivity increased by a factor of 2.5 when separating 5- and 15-mer oligonucleotides using packing with 300 angstrom rather than 100 angstrom pores. We complemented the analytical investigation by theoretically demonstrating how the selectivity is dependent on the column's accessible surface area as a function of solute size. In the preparative investigation, we determined adsorption isotherms for oligonucleotides using the inverse method for separations of a 9- and a 10-mer. We found that preparative columns with a 60 angstrom-pore-size packing material provided a 10% increase in productivity as compared with a 300 A packing material, although the surface area of the 60 angstrom packing is as much as five time larger.
  •  
2.
  • Enmark, Martin, 1984-, et al. (författare)
  • A closer study of peak distortions in supercritical fluid chromatography as generated by the injection
  • 2015
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1400, s. 131-139
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract In SFC the sample cannot be dissolved in the mobile phase, so it is often dissolved in pure modifier, or another liquid, sometimes resulting in serious distortions of the eluted peak profiles already at moderately high injection volumes. It is suspected the reasons for these effects are solvent strength mismatch and/or viscosity mismatch. This study presents a systematic and fundamental investigation of the origin of these peak deformations due to the injection solvent effects in SFC, using both systematic experiments and numerical modeling. The first set of experiments proved that the injection volume and the elution strength of the sample solution had a major impact of the shapes of the eluted peaks. Secondly, the sample band elution profile was numerically modeled on a theoretical basis assuming both un-retained and retained co-solvent injection plugs, respectively. These calculations quantitatively confirmed our first set of experiments but also pointed out that there is also an additional significant effect. Third, viscous fingering experiments were performed using viscosity contrast conditions imitating those encountered in SFC. These experiments clearly proved that viscous fingering effects play a significant role. A new method for determination of adsorption isotherms of solvents was also developed, called the “Retention Time Peak Method” (RTPM). The RTPM was used for fast estimation of the adsorption isotherms of the modifier and required using only two experiments.
  •  
3.
  • Enmark, Martin, 1984-, et al. (författare)
  • Building machine-learning-based models for retention time and resolution predictions in ion pair chromatography of oligonucleotides
  • 2022
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1671
  • Tidskriftsartikel (refereegranskat)abstract
    • Support vector regression models are created and used to predict the retention times of oligonucleotides separated using gradient ion-pair chromatography with high accuracy. The experimental dataset consisted of fully phosphorothioated oligonucleotides. Two models were trained and validated using two pseudo orthogonal gradient modes and three gradient slopes. The results show that the spread in retention time differs between the two gradient modes, which indicated varying degree of sequence dependent separation. Peak widths from the experimental dataset were calculated and correlated with the guanine cytosine content and retention time of the sequence for each gradient slope. This data was used to predict the resolution of the n - 1 impurity among 250 0 0 0 random 12-and 16-mer sequences; showing one of the investigated gradient modes has a much higher probability of exceeding a resolution of 1.5, particularly for the 16-mer sequences. Sequences having a high guanine-cytosine content and a terminal C are more likely to not reach critical resolution. The trained SVR models can both be used to identify characteristics of different separation methods and to assist in the choice of method conditions, i.e. to optimize resolution for arbitrary sequences. The methodology presented in this study can be expected to be applicable to predict retention times of other oligonucleotide synthesis and degradation impurities if provided enough training data.
  •  
4.
  • Enmark, Martin, 1984-, et al. (författare)
  • Determination of adsorption isotherms in supercritical fluid chromatography
  • 2013
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673 .- 1873-3778. ; 1312, s. 124-133
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract In this study we will demonstrate the potential of modern integrated commercial analytical SFC-systems for rapid and reliable acquisition of thermodynamic data. This will be done by transferring the following adsorption isotherm determination methods from liquid chromatography (LC) to supercritical fluid chromatography (SFC): Elution by Characteristic Points (ECP), the Retention Time Method (RTM), the Inverse Method (IM) and the Perturbation Peak (PP) method. In order to transfer these methods to SFC in a reliable, reproducible way we will demonstrate that careful system verification using external sensors of mass flow, temperature and pressure are needed first. The adsorption isotherm data generated by the different methods were analyzed and compared and the adsorption isotherms ability to predict new experimental elution profiles was verified by comparing experiments with simulations. It was found that adsorption isotherm data determined based on elution profiles, i.e., ECP, IM and RTM, were able to accurately predict overloaded experimental elution profiles while the more tedious and time-consuming PP method, based on small injections on concentration plateaus, failed in doing so.
  •  
5.
  • Enmark, Martin, 1984-, et al. (författare)
  • Development of a unified gradient theory for ion-pair chromatography using oligonucleotide separations as a model case
  • 2023
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1691
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion-pair chromatography is the de facto standard for separating oligonucleotides and related impurities, particularly for analysis but also often for small-scale purification. Currently, there is limited understanding of the quantitative modeling of both analytical and overloaded elution profiles obtained during gradient elution in ion-pair chromatography. Here we will investigate a recently introduced gradient mode, the so-called ion-pairing reagent gradient mode, for both analytical and overloaded separations of oligonucleotides. The first part of the study demonstrates how the electrostatic theory of ion-pair chromatography can be applied for modeling gradient elution of oligonucleotides. When the ion-pair gradient mode is used in a region where the electrostatic surface potential can be linearized, a closed-form expression of retention time can be derived. A unified retention model was then derived, applicable for both ion-pair reagent gradient mode as well as co-solvent gradient mode. The model was verified for two different experimental systems and homo- and heteromeric oligonucleotides of different lengths. Quantitative modeling of overloaded chromatography using the ion-pairing reagent gradient mode was also investigated. Firstly, a unified adsorption isotherm model was developed for both gradient modes. Then, adsorption isotherms parameter of a model oligonucleotide and two major synthetic impurities were estimated using the inverse method. Secondly, the parameters of the adsorption isotherm were then used to investigate how the productivity of oligonucleotide varies with injection volume, gradient slope, and initial retention factor. Here, the productivity increased when using a shallow gradient slope combined with a low initial retention factor. Finally, experiments were conducted to confirming some of the model predictions. Comparison with the conventional co-solvent gradient mode showed that the ion-pairing reagent gradient leads to both higher yield and productivity while consuming less co-solvent.
  •  
6.
  • Enmark, Martin, 1984-, et al. (författare)
  • Investigation of plateau methods for adsorption isotherm determination in supercritical fluid chromatography
  • 2014
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673 .- 1873-3778. ; 1354, s. 129-138
  • Tidskriftsartikel (refereegranskat)abstract
    • The Perturbation Peak (PP) method and Frontal analysis (FA) are considered as the most accurate methods for adsorption isotherms determination in liquid chromatography. In this study we investigate and explain why this is not the case in Supercritical Fluid Chromatography (SFC), where the PP method does not work at all, using a modern analytical system. The main reason was found to be that the solute to be studied must be dissolved in the MeOH reservoir before it is mixed with CO2. Since the solute occupies a certain partial volume in the reservoir, the larger the solute content the larger this fractional volume will be, and the final MeOH fraction in the mobile phase will then be smaller compared to the bulk mobile phase without solute in the modifier. If the retention of small injections on the concentration plateaus, i.e., “analytical-size” perturbation peaks, is sensitive to small variations of MeOH in the eluent, this will seriously decrease the accuracy of the PP method. This effect was verified and compensated for and we also demonstrated that the same problem will occur in frontal analysis, another concentration plateau method.
  •  
7.
  • Enmark, Martin, 1984-, et al. (författare)
  • Investigation of robustness for supercritical fluid chromatography separation of peptides : Isocratic vs gradient mode
  • 2018
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1568, s. 177-187
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated and compared the robustness of supercritical fluid chromatography (SFC) separations of the peptide gramicidin, using either isocratic or gradient elution. This was done using design of experiments in a design space of co-solvent fraction, water mass fraction in co-solvent, pressure, and temperature. The density of the eluent (CO2-MeOH-H2O) was experimentally determined using a Coriolis mass flow meter to calculate the volumetric flow rate required by the design. For both retention models, the most important factor was the total co-solvent fraction and water mass fraction in co-solvent. Comparing the elution modes, we found that gradient elution was more than three times more robust than isocratic elution. We also observed a relationship between the sensitivity to changes and the gradient steepness and used this to draw general conclusions beyond the studied experimental system. To test the robustness in a practical context, both the isocratic and gradient separations were transferred to another laboratory. The gradient elution was highly reproducible between laboratories, whereas the isocratic system was not. Using measurements of the actual operational conditions (not the set system conditions), the isocratic deviation was quantitatively explained using the retention model. The findings indicate the benefits of using gradient elution in SFC as well as the importance of measuring the actual operational conditions to be able to explain observed differences between laboratories when conducting method transfer.
  •  
8.
  • Enmark, Martin, 1984-, et al. (författare)
  • Selectivity limits of and opportunities for ion pair chromatographic separation of oligonucleotides
  • 2021
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1651
  • Tidskriftsartikel (refereegranskat)abstract
    • A B S T R A C T Here it was investigated how oligonucleotide retention and selectivity factors are affected by electrostatic and non-electrostatic interactions in ion pair chromatography. A framework was derived describing how selectivity depends on the electrostatic potential generated by the ion-pair reagent concentration, co-solvent volume fraction, charge difference between the analytes, and temperature. Isocratic experiments verified that, in separation problems concerning oligonucleotides of different charges, selectivity increases with increasing surface potential and analyte charge difference and with decreasing co-solvent volume fraction and temperature. For analytes of the same charge, for example, diastereomers of phosphorothioated oligonucleotides, selectivity can be increased by decreasing the co-solvent volume fraction or the temperature and has only a minor dependency on the ion-pairing reagent concentration. An important observation is that oligonucleotide retention is driven predominantly by electrostatic interaction generated by the adsorption of the ion-pairing reagent. We therefore compared classical gradient elution in which the co-solvent volume fraction increases over time versus gradient elution with a constant co-solvent volume fraction but with decreasing ion-pair reagent concentration over time. Both modes decrease the electrostatic potential. Oligonucleotide selectivity was found to increase with decreasing ion pairing reagent concentration. The two elution modes were finally applied to two different model anti sense oligonucleotide separation problems, and it was shown that the ion-pair reagent gradient increases the selectivity of non-charge & ndash;based separation problems while maintaining charge-difference & ndash;based selectivity. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
  •  
9.
  • Forss, Erik, et al. (författare)
  • Chemometric evaluation of the combined effect of temperature, pressure, and co-solvent fractions on the chiral separation of basic pharmaceuticals using actual vs set operational conditions
  • 2017
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1499, s. 165-173
  • Tidskriftsartikel (refereegranskat)abstract
    • The need to determine the actual operational conditions, instead of merely using the set operational conditions, was investigated for in packed supercritical fluid chromatography (SFC) by design of experiments (DoE) using a most important type of compounds, pharmaceutical basics, as models. The actual values of temperature, pressure, and methanol levels were recorded and calculated from external sensors, while the responses in the DoE were the retention factors and selectivity. A Kromasil CelluCoat columh was used as the stationary phase, carbon dioxide containing varying methanol contents as the mobile phase, and the six racemates of alprenolol, atenolol, metoprolol, propranolol, clenbuterol, and mianserin were selected as model solutes. For the retention modeling, the most important term was the methanol fraction followed by the temperature and pressure. Significant differences (p<0.05) between most of the coefficients in the retention models were observed when comparing models from set and actual conditions. The selectivity was much less affected by operational changes, and therefore was not severely affected by difference between set and actual conditions. The temperature differences were usually small, maximum +/- 1.4 degrees C, whereas the pressure differences were larger, typically approximately +10.5 bar. The set and actual fractions of methanol also differed, usually by +/- 0.4 percentage points. A cautious conclusion is that the primary reason for the discrepancy between the models is a mismatch between the set and actual methanol fractions. This mismatch is more serious in retention models at low methanol fractions. The study demonstrates that the actual conditions should almost always be preferred. (C) 2017 Elsevier B.V. All rights reserved.
  •  
10.
  • Åsberg, Dennis, 1988-, et al. (författare)
  • Evaluation of co-solvent fraction, pressure and temperature effects in analytical and preparative supercritical fluid chromatography
  • 2014
  • Ingår i: Journal of Chromatography A. - : Elsevier. - 0021-9673 .- 1873-3778. ; 1374, s. 254-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract A chemometric approach is used for studying the combined effect of temperature, pressure and co-solvent fraction in analytical and preparative supercritical fluid chromatography (SFC). More specifically, by utilizing design of experiments coupled with careful measurements of the experimental conditions the interaction between pressure, temperature and co-solvent fraction was studied with respect to productivity, selectivity and retention in chiral SFC. A tris-(3,5-dimethylphenyl) carbamoyl cellulose stationary phase with carbon dioxide/methanol as mobile phase and the two racemic analytes trans-stilbene oxide (TSO) and 1,1′-bi-2-naphthol (BINOL) were investigated. It was found for the investigated model system that the co-solvent fraction and pressure were the parameters that most affected the retention factors and that the co-solvent fraction and column temperature were most important for controlling the selectivity. The productivity in the preparative mode of SFC was most influenced by the co-solvent fraction and temperature. Both high co-solvent fraction and temperature gave maximum productivity in the studied design space.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy