SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0022 2593 OR L773:1468 6244 ;srt2:(2015-2019);hsvcat:3"

Search: L773:0022 2593 OR L773:1468 6244 > (2015-2019) > Medical and Health Sciences

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wilbe, Maria, et al. (author)
  • MuSK : a new target for lethal fetal akinesia deformation sequence (FADS).
  • 2015
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 52:3, s. 195-202
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS.METHODS AND RESULTS: We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency.CONCLUSIONS: To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.
  •  
2.
  • Beyerlein, Andreas, et al. (author)
  • Progression from islet autoimmunity to clinical type 1 diabetes is influenced by genetic factors : Results from the prospective TEDDY study
  • 2019
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 56:9, s. 602-605
  • Journal article (peer-reviewed)abstract
    • Background: Progression time from islet autoimmunity to clinical type 1 diabetes is highly variable and the extent that genetic factors contribute is unknown. Methods: In 341 islet autoantibody-positive children with the human leucocyte antigen (HLA) DR3/DR4-DQ8 or the HLA DR4-DQ8/DR4-DQ8 genotype from the prospective TEDDY (The Environmental Determinants of Diabetes in the Young) study, we investigated whether a genetic risk score that had previously been shown to predict islet autoimmunity is also associated with disease progression. Results: Islet autoantibody-positive children with a genetic risk score in the lowest quartile had a slower progression from single to multiple autoantibodies (p=0.018), from single autoantibodies to diabetes (p=0.004), and by trend from multiple islet autoantibodies to diabetes (p=0.06). In a Cox proportional hazards analysis, faster progression was associated with an increased genetic risk score independently of HLA genotype (HR for progression from multiple autoantibodies to type 1 diabetes, 1.27, 95% CI 1.02 to 1.58 per unit increase), an earlier age of islet autoantibody development (HR, 0.68, 95% CI 0.58 to 0.81 per year increase in age) and female sex (HR, 1.94, 95% CI 1.28 to 2.93). Conclusions: Genetic risk scores may be used to identify islet autoantibody-positive children with high-risk HLA genotypes who have a slow rate of progression to subsequent stages of autoimmunity and type 1 diabetes.
  •  
3.
  • Kostjukovits, Svetlana, et al. (author)
  • Decreased telomere length in children with cartilage-hair hypoplasia
  • 2017
  • In: Journal of Medical Genetics. - : BMJ PUBLISHING GROUP. - 0022-2593 .- 1468-6244. ; 54:5, s. 365-370
  • Journal article (peer-reviewed)abstract
    • Background Cartilage-hair hypoplasia (CHH) is an autosomal recessive chondrodysplasia caused by RMRP (RNA component of mitochondrial RNA processing endoribonuclease) gene mutations. Manifestations include short stature, variable immunodeficiency, anaemia and increased risk of malignancies, all of which have been described also in telomere biology disorders. RMRP interacts with the telomerase RT (TERT) subunit, but the influence of RMRP mutations on telomere length is unknown. We measured relative telomere length (RTL) in patients with CHH, their first-degree relatives and healthy controls and correlated RTL with clinical and laboratory features. Methods The study cohort included 48 patients with CHH with homozygous (n=36) or compound heterozygous RMRP mutations (median age 38.2 years, range 6.0-70.8 years), 86 relatives (74 with a heterozygous RMRP mutation) and 94 unrelated healthy controls. We extracted DNA from peripheral blood, sequenced the RMRP gene and measured RTL by qPCR. Results Compared with age-matched and sex-matched healthy controls, median RTL was significantly shorter in patients with CHH (n=40 pairs, 1.05 vs 1.21, p=0.017), but not in mutation carriers (n=48 pairs, 1.16 vs 1.10, p=0.224). RTL correlated significantly with age in RMRP mutation carriers (r=-0.482, p < 0.001) and non-carriers (r=-0.498, p<0.001), but not in patients (r=-0.236, p=0.107). In particular children (< 18 years) with CHH had shorter telomeres than controls (median RTL 1.12 vs 1.26, p=0.008). In patients with CHH, RTL showed no correlation with genotype, clinical or laboratory characteristics. Conclusions Telomere length was decreased in children with CHH. We found no correlation between RTL and clinical or laboratory parameters.
  •  
4.
  •  
5.
  • Potjer, Thomas P., et al. (author)
  • CM-Score : A validated scoring system to predict CDKN2A germline mutations in melanoma families from Northern Europe
  • 2018
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 55:10, s. 661-668
  • Journal article (peer-reviewed)abstract
    • Background: Several factors have been reported that influence the probability of a germline CDKN2A mutation in a melanoma family. Our goal was to create a scoring system to estimate this probability, based on a set of clinical features present in the patient and his or her family. Methods: Five clinical features and their association with CDKN2A mutations were investigated in a training cohort of 1227 Dutch melanoma families (13.7% with CDKN2A mutation) using multivariate logistic regression. Predefined features included number of family members with melanoma and with multiple primary melanomas, median age at diagnosis and presence of pancreatic cancer or upper airway cancer in a family member. Based on these five features, a scoring system (CDKN2A Mutation(CM)-Score) was developed and subsequently validated in a combined Swedish and Dutch familial melanoma cohort (n=421 families; 9.0% with CDKN2A mutation). Results: All five features were significantly associated (p<0.05) with a CDKN2A mutation. At a CM-Score of 16 out of 49 possible points, the threshold of 10% mutation probability is approximated (9.9%; 95% CI 9.8 to 10.1). This probability further increased to >90% for families with ≥36 points. A CM-Score under 16 points was associated with a low mutation probability (≤4%). CM-Score performed well in both the training cohort (area under the curve (AUC) 0.89; 95% CI 0.86 to 0.92) and the external validation cohort (AUC 0.94; 95% CI 0.90 to 0.98). Conclusion: We developed a practical scoring system to predict CDKN2A mutation status among melanoma-prone families. We suggest that CDKN2A analysis should be recommended to families with a CM-Score of ≥16 points.
  •  
6.
  • Postmus, I., et al. (author)
  • Meta-analysis of genome-wide association studies of HDL cholesterol response to statins
  • 2016
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 53:12, s. 835-45
  • Journal article (peer-reviewed)abstract
    • Background In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Interindividual variation in HDL-C response to statins may be partially explained by genetic variation. Methods and results We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p<1x10(-4) from the 16 769 statin-treated participants in the first analysis stage were followed up in an independent group of 10 951 statin-treated individuals, providing a total sample size of 27 720 individuals. The only associations of genome-wide significance (p<5x10(-8)) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment. Conclusions Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels.
  •  
7.
  • Dhanraj, Santhosh, et al. (author)
  • Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN)
  • 2015
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 52:11, s. 738-748
  • Journal article (peer-reviewed)abstract
    • Background Deadenylation regulates RNA function and fate. Poly(A)-specific ribonuclease (PARN) is a deadenylase that processes mRNAs and non-coding RNA. Little is known about the biological significance of germline mutations in PARN. Methods We identified mutations in PARN in patients with haematological and neurological manifestations. Genomic, biochemical and knockdown experiments in human marrow cells and in zebrafish have been performed to clarify the role of PARN in the human disease. Results We identified large monoallelic deletions in PARN in four patients with developmental delay or mental illness. One patient in particular had a severe neurological phenotype, central hypomyelination and bone marrow failure. This patient had an additional missense mutation on the non-deleted allele and severely reduced PARN protein and deadenylation activity. Cells from this patient had impaired oligoadenylation of specific H/ACA box small nucleolar RNAs. Importantly, PARN-deficient patient cells manifested short telomeres and an aberrant ribosome profile similar to those described in some variants of dyskeratosis congenita. Knocking down PARN in human marrow cells and zebrafish impaired haematopoiesis, providing further evidence for a causal link with the human disease. Conclusions Large monoallelic mutations of PARN can cause developmental/mental illness. Biallelic PARN mutations cause severe bone marrow failure and central hypomyelination.
  •  
8.
  • Halvardson, Jonatan, et al. (author)
  • Mutations in HECW2 are associated with intellectual disability and epilepsy
  • 2016
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 53:10, s. 697-704
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: De novo mutations are a frequent cause of disorders related to brain development. We report the results of screening patients diagnosed with both epilepsy and intellectual disability (ID) using exome sequencing to identify known and new causative de novo mutations relevant to these conditions.METHODS: Exome sequencing was performed on 39 patient-parent trios to identify de novo mutations. Clinical significance of de novo mutations in genes was determined using the American College of Medical Genetics and Genomics standard guidelines for interpretation of coding variants. Variants in genes of unknown clinical significance were further analysed in the context of previous trio sequencing efforts in neurodevelopmental disorders.RESULTS: In 39 patient-parent trios we identified 29 de novo mutations in coding sequence. Analysis of de novo and inherited variants yielded a molecular diagnosis in 11 families (28.2%). In combination with previously published exome sequencing results in neurodevelopmental disorders, our analysis implicates HECW2 as a novel candidate gene in ID and epilepsy.CONCLUSIONS: Our results support the use of exome sequencing as a diagnostic approach for ID and epilepsy, and confirm previous results regarding the importance of de novo mutations in this patient group. The results also highlight the utility of network analysis and comparison to previous large-scale studies as strategies to prioritise candidate genes for further studies. This study adds knowledge to the increasingly growing list of causative and candidate genes in ID and epilepsy and highlights HECW2 as a new candidate gene for neurodevelopmental disorders.
  •  
9.
  • Hofmeister, Wolfgang, et al. (author)
  • CTNND2-a candidate gene for reading problems and mild intellectual disability.
  • 2015
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 52:2, s. 111-22
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Cytogenetically visible chromosomal translocations are highly informative as they can pinpoint strong effect genes even in complex genetic disorders.METHODS AND RESULTS: Here, we report a mother and daughter, both with borderline intelligence and learning problems within the dyslexia spectrum, and two apparently balanced reciprocal translocations: t(1;8)(p22;q24) and t(5;18)(p15;q11). By low coverage mate-pair whole-genome sequencing, we were able to pinpoint the genomic breakpoints to 2 kb intervals. By direct sequencing, we then located the chromosome 5p breakpoint to intron 9 of CTNND2. An additional case with a 163 kb microdeletion exclusively involving CTNND2 was identified with genome-wide array comparative genomic hybridisation. This microdeletion at 5p15.2 is also present in mosaic state in the patient's mother but absent from the healthy siblings. We then investigated the effect of CTNND2 polymorphisms on normal variability and identified a polymorphism (rs2561622) with significant effect on phonological ability and white matter volume in the left frontal lobe, close to cortical regions previously associated with phonological processing. Finally, given the potential role of CTNND2 in neuron motility, we used morpholino knockdown in zebrafish embryos to assess its effects on neuronal migration in vivo. Analysis of the zebrafish forebrain revealed a subpopulation of neurons misplaced between the diencephalon and telencephalon.CONCLUSIONS: Taken together, our human genetic and in vivo data suggest that defective migration of subpopulations of neuronal cells due to haploinsufficiency of CTNND2 contribute to the cognitive dysfunction in our patients.
  •  
10.
  • Kalokairinou, Louiza, et al. (author)
  • Regulating the advertising of genetic tests in Europe : a balancing act
  • 2017
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 54:10, s. 651-656
  • Journal article (peer-reviewed)abstract
    • Direct-to-consumer (DTC) genetic tests (GT) have provoked criticism over their potential adverse impact on public health. The European Parliament called for a ban on DTC advertising of GT during the debate for the adoption of a European Regulation on in vitro diagnostic medical devices. This proposal, however, was not ultimately retained in the final text. Instead, the regulation includes an article prohibiting misleading claims for this kind of advertising. These two different approaches raise questions about the optimal degree of regulation. Herein, we provide an overview of the ways GT have been advertised and related ethical issues. Subsequently, the laws regulating the advertising of GT at the European Union and national level are examined. Finally, recent regulatory developments are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view