SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0022 2836 OR L773:1089 8638 ;pers:(Härd Torleif 1959)"

Sökning: L773:0022 2836 OR L773:1089 8638 > Härd Torleif 1959

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dogan, Jakob, et al. (författare)
  • Thermodynamics of folding and binding in an affibody:affibody complex.
  • 2006
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 359:5, s. 1305-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody binding proteins are selected from phage-displayed libraries of variants of the 58 residue Z domain. Z(Taq) is an affibody originally selected as a binder to Taq DNA polymerase. The anti-Z(Taq) affibody was selected as a binder to Z(Taq) and the Z(Taq):anti-Z(Taq) complex is formed with a dissociation constant K(d)=0.1 microM. We have determined the structure of the Z(Taq):anti-Z(Taq) complex as well as the free state structures of Z(Taq) and anti-Z(Taq) using NMR. Here we complement the structural data with thermodynamic studies of Z(Taq) and anti-Z(Taq) folding and complex formation. Both affibody proteins show cooperative two-state thermal denaturation at melting temperatures T(M) approximately 56 degrees C. Z(Taq):anti-Z(Taq) complex formation at 25 degrees C in 50 mM NaCl and 20 mM phosphate buffer (pH 6.4) is enthalpy driven with DeltaH degrees (bind) = -9.0 (+/-0.1) kcal mol(-1)(.) The heat capacity change DeltaC(P) degrees (,bind)=-0.43 (+/-0.01) kcal mol(-1) K(-1) is in accordance with the predominantly non-polar character of the binding surface, as judged from calculations based on changes in accessible surface areas. A further dissection of the small binding entropy at 25 degrees C (-TDeltaS degrees (bind) = -0.6 (+/-0.1) kcal mol(-1)) suggests that a favourable desolvation of non-polar surface is almost completely balanced by unfavourable conformational entropy changes and loss of rotational and translational entropy. Such effects can therefore be limiting for strong binding also when interacting protein components are stable and homogeneously folded. The combined structure and thermodynamics data suggest that protein properties are not likely to be a serious limitation for the development of engineered binding proteins based on the Z domain.
  •  
2.
  • Guy, Jodie E, et al. (författare)
  • New insights into multiple coagulation factor deficiency from the solution structure of human MCFD2.
  • 2008
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 381:4, s. 941-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Human MCFD2 (multiple coagulation factor deficiency 2) is a 16-kDa protein known to participate in transport of the glycosylated human coagulation factors V and VIII along the secretory pathway. Mutations in MCFD2 or in its binding partner, the membrane-bound transporter ERGIC (endoplasmic reticulum-Golgi intermediate compartment)-53, cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). While ERGIC-53 is known to be a lectin-type mannose binding protein, the role of MCFD2 in the secretory pathway is comparatively unclear. MCFD2 has been shown to bind both ERGIC-53 and the blood coagulation factors, but little is known about the binding sites or the true function of the protein. In order to facilitate understanding of the function of MCFD2 and the mechanism by which mutations in the protein cause F5F8D, we have determined the structure of human MCFD2 in solution by NMR. Our results show the folding of MCFD2 to be dependent on availability of calcium ions. The protein, which is disordered in the apo state, folds upon binding of Ca(2+) to the two EF-hand motifs of its C-terminus, while retaining some localized disorder in the N-terminus. NMR studies on two disease-causing mutant variants of MCFD2 show both to be predominantly disordered, even in the presence of calcium ions. These results provide an explanation for the previously observed calcium dependence of the MCFD2-ERGIC-53 interaction and, furthermore, clarify the means by which mutations in this protein result in inefficient secretion of blood coagulation factors V and VIII.
  •  
3.
  • Hoyer, Wolfgang, 1975, et al. (författare)
  • Interaction of Alzheimer's A beta peptide with an engineered binding protein--thermodynamics and kinetics of coupled folding-binding.
  • 2008
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 378:2, s. 398-411
  • Tidskriftsartikel (refereegranskat)abstract
    • The oligomerization and aggregation of the amyloid-beta (A beta) peptide, a cleavage product of the amyloid precursor protein predominantly 40 or 42 amino acids in length, has been implicated in the pathogenesis of Alzheimer's disease. The identification of A beta-binding agents, e.g., antibodies or peptides, constitutes a promising therapeutic approach. However, the amount of structural and biophysical data on the underlying A beta interactions is currently very limited. We have earlier determined the structure of A beta (1-40) in complex with the affibody protein Z(A beta 3), a selected binding protein based on a three-helix bundle scaffold (Z domain). Z(A beta 3) is a dimer of affibody subunits linked via a disulfide bridge involving a selected cysteine mutation at position 28. Z(A beta 3) binds to the central and C-terminal part of A beta (residues 17-36), which adopts a beta-hairpin conformation in the complex. Here we present a detailed biophysical analysis of the Z(A beta 3):A beta (1-40) interaction, employing NMR, circular dichroism spectroscopy, 8-anilino-1-naphthalenesulfonic acid and tyrosine fluorescence, size-exclusion chromatography, thermal denaturation profiles and isothermal titration calorimetry. We conclude that (i) free Z(A beta 3) is characterized by conformational exchange and the loss of helix 1 of the three-helix bundle scaffold; (ii) a high-energy barrier is associated with the conversion of an initial Z(A beta 3):A beta (1-40) recognition complex into the native complex structure, entailing slow binding kinetics; (iii) both A beta and Z(A beta 3) fold upon binding, which, e.g., becomes manifest in the binding thermodynamics that feature a large negative change in heat capacity; (iv) the C28-disulfide does not merely afford dimerization, but its impact on the binding interfaces of the affibody subunits and A beta is a prerequisite for tight binding. The extensive folding coupled to binding observed here likely constitutes an obligate feature of biomolecular interactions involving the central and C-terminal part of A beta. Options for improvement of Z(A beta) binding proteins are discussed.
  •  
4.
  • Lendel, Christofer, et al. (författare)
  • Structural basis for molecular recognition in an affibody:affibody complex.
  • 2006
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 359:5, s. 1293-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper.
  •  
5.
  • Sandberg, Anders, 1975, et al. (författare)
  • SEA domain autoproteolysis accelerated by conformational strain: energetic aspects.
  • 2008
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 377:4, s. 1117-29
  • Tidskriftsartikel (refereegranskat)abstract
    • A subclass of proteins with the SEA (sea urchin sperm protein, enterokinase, and agrin) domain fold exists as heterodimers generated by autoproteolytic cleavage within a characteristic G(-1)S+1VVV sequence. Autoproteolysis occurs by a nucleophilic attack of the serine hydroxyl on the vicinal glycine carbonyl followed by an N-->O acyl shift and hydrolysis of the resulting ester. The reaction has been suggested to be accelerated by the straining of the scissile peptide bond upon protein folding. In an accompanying article, we report the mechanism; in this article, we provide further key evidence and account for the energetics of coupled protein folding and autoproteolysis. Cleavage of the GPR116 domain and that of the MUC1 SEA domain occur with half-life (t((1/2))) values of 12 and 18 min, respectively, with lowering of the free energy of the activation barrier by approximately 10 kcal mol(-1) compared with uncatalyzed hydrolysis. The free energies of unfolding of the GPR116 and MUC1 SEA domains were measured to approximately 11 and approximately 15 kcal mol(-1), respectively, but approximately 7 kcal mol(-1) of conformational energy is partitioned as strain over the scissile peptide bond in the precursor to catalyze autoproteolysis by substrate destabilization. A straining energy of approximately 7 kcal mol(-1) was measured by using both a pre-equilibrium model to analyze stability and cleavage kinetics data obtained with the GPR116 SEA domain destabilized by core mutations or urea addition, as well as the difference in thermodynamic stabilities of the MUC1 SEA precursor mutant S1098A (with a G(-1)A+1VVV motif) and the wild-type protein. The results imply that cleavage by N-->O acyl shift alone would proceed with a t((1/2)) of approximately 2.3 years, which is too slow to be biochemically effective. A subsequent review of structural data on other self-cleaving proteins suggests that conformational strain of the scissile peptide bond may be a common mechanism of autoproteolysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy