SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0027 8424 OR L773:1091 6490 ;lar1:(hkr)"

Search: L773:0027 8424 OR L773:1091 6490 > Kristianstad University College

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cayuela, Hugo, et al. (author)
  • Thermal conditions predict intraspecific variation in senescence rate in frogs and toads
  • 2024
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:49
  • Journal article (peer-reviewed)abstract
    • Variation in temperature is known to influence mortality patterns in ectotherms. Even though a few experimental studies on model organisms have reported a positive relationship between temperature and actuarial senescence (i.e., the increase in mortality risk with age), how variation in climate influences the senescence rate across the range of a species is still poorly understood in free-ranging animals. We filled this knowledge gap by investigating the relationships linking senescence rate, adult lifespan, and climatic conditions using long-term capture–recapture data from multiple amphibian populations. We considered two pairs of related anuran species from the Ranidae (Rana luteiventris and Rana temporaria) and Bufonidae (Anaxyrus boreas and Bufo bufo) families, which diverged more than 100 Mya and are broadly distributed in North America and Europe. Senescence rates were positively associated with mean annual temperature in all species. In addition, lifespan was negatively correlated with mean annual temperature in all species except A. boreas. In both R. luteiventris and A. boreas, mean annual precipitation and human environmental footprint both had negligible effects on senescence rates or lifespans. Overall, our findings demonstrate the critical influence of thermal conditions on mortality patterns across anuran species from temperate regions. In the current context of further global temperature increases predicted by Intergovernmental Panel on Climate Change scenarios, a widespread acceleration of aging in amphibians is expected to occur in the decades to come, which might threaten even more seriously the viability of populations and exacerbate global decline.
  •  
2.
  • Garwicz, Martin, et al. (author)
  • A unifying model for timing of walking onset in humans and other mammals
  • 2009
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:51, s. 21889-21893
  • Journal article (peer-reviewed)abstract
    • The onset of walking is a fundamental milestone in motor development of humans and other mammals, yet little is known about what factors determine its timing. Hoofed animals start walking within hours after birth, rodents and small carnivores require days or weeks, and nonhuman primates take months and humans approximately a year to achieve this locomotor skill. Here we show that a key to the explanation for these differences is that time to the onset of walking counts from conception and not from birth, indicating that mechanisms underlying motor development constitute a functional continuum from pre- to postnatal life. In a multiple-regression model encompassing 24 species representative of 11 extant orders of placental mammals that habitually walk on the ground, including humans, adult brain mass accounted for 94% of variance in time to walking onset postconception. A dichotomous variable reflecting species differences in functional limb anatomy accounted for another 3.8% of variance. The model predicted the timing of walking onset in humans with high accuracy, showing that this milestone in human motor development occurs no later than expected given the mass of the adult human brain, which in turn reflects the duration of its ontogenetic development. The timing of motor development appears to be highly conserved in mammalian evolution as the ancestors of some of the species in the sample presented here diverged in phylogenesis as long as 100 million years ago. Fundamental patterns of early human life history may therefore have evolved before the evolution of primates.
  •  
3.
  • Garwicz, Martin, et al. (author)
  • A unifying model for timing of walking onset in humans and other mammals.
  • 2009
  • In: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 106, s. 21889-21893
  • Journal article (peer-reviewed)abstract
    • The onset of walking is a fundamental milestone in motor development of humans and other mammals, yet little is known about what factors determine its timing. Hoofed animals start walking within hours after birth, rodents and small carnivores require days or weeks, and nonhuman primates take months and humans approximately a year to achieve this locomotor skill. Here we show that a key to the explanation for these differences is that time to the onset of walking counts from conception and not from birth, indicating that mechanisms underlying motor development constitute a functional continuum from pre- to postnatal life. In a multiple-regression model encompassing 24 species representative of 11 extant orders of placental mammals that habitually walk on the ground, including humans, adult brain mass accounted for 94% of variance in time to walking onset postconception. A dichotomous variable reflecting species differences in functional limb anatomy accounted for another 3.8% of variance. The model predicted the timing of walking onset in humans with high accuracy, showing that this milestone in human motor development occurs no later than expected given the mass of the adult human brain, which in turn reflects the duration of its ontogenetic development. The timing of motor development appears to be highly conserved in mammalian evolution as the ancestors of some of the species in the sample presented here diverged in phylogenesis as long as 100 million years ago. Fundamental patterns of early human life history may therefore have evolved before the evolution of primates.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view