SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0027 8424 OR L773:1091 6490 ;pers:(von Heijne Gunnar)"

Sökning: L773:0027 8424 OR L773:1091 6490 > Von Heijne Gunnar

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernsel, Andreas, et al. (författare)
  • Prediction of membrane-protein topology from first principles
  • 2008
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 105:20, s. 7177-7181
  • Tidskriftsartikel (refereegranskat)abstract
    • The current best membrane-protein topology-prediction methods are typically based on sequence statistics and contain hundreds of parameters that are optimized on known topologies of membrane proteins. However, because the insertion of transmembrane helices into the membrane is the outcome of molecular interactions among protein, lipids and water, it should be possible to predict topology by methods based directly on physical data, as proposed >20 years ago by Kyte and Doolittle. Here, we present two simple topology-prediction methods using a recently published experimental scale of position-specific amino acid contributions to the free energy of membrane insertion that perform on a par with the current best statistics-based topology predictors. This result suggests that prediction of membrane-protein topology and structure directly from first principles is an attainable goal, given the recently improved understanding of peptide recognition by the translocon.
  •  
2.
  • Cymer, Florian, et al. (författare)
  • Cotranslational folding of membrane proteins probed by arrest-peptide-mediated force measurements
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:36, s. 14640-14645
  • Tidskriftsartikel (refereegranskat)abstract
    • Polytopic membrane proteins are inserted cotranslationally into target membranes by ribosome-translocon complexes. It is, however, unclear when during the insertion process specific interactions between the transmembrane helices start to form. Here, we use a recently developed in vivo technique to measure pulling forces acting on transmembrane helices during their cotranslational insertion into the inner membrane of Escherichia coli to study the earliest steps of tertiary folding of five polytopic membrane proteins. We find that interactions between residues in a C-terminally located transmembrane helix and in more N-terminally located helices can be detected already at the point when the C-terminal helix partitions from the translocon into the membrane. Our findings pinpoint the earliest steps of tertiary structure formation and open up possibilities to study the cotranslational folding of polytopic membrane proteins.
  •  
3.
  • Farias-Rico, Jose Arcadio, et al. (författare)
  • Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:40, s. e9280-E9287
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last five decades, studies of protein folding in dilute buffer solutions have produced a rich picture of this complex process. In the cell, however, proteins can start to fold while still attached to the ribosome (cotranslational folding) and it is not yet clear how the ribosome affects the folding of protein domains of different sizes, thermodynamic stabilities, and net charges. Here, by using arrest peptides as force sensors and on-ribosome pulse proteolysis, we provide a comprehensive picture of how the distance from the peptidyl transferase center in the ribosome at which proteins fold correlates with protein size. Moreover, an analysis of a large collection of mutants of the Escherichia coli ribosomal protein 56 shows that the force exerted on the nascent chain by protein folding varies linearly with the thermodynamic stability of the folded state, and that the ribosome environment disfavors folding of domains of high net-negative charge.
  •  
4.
  • Fluman, Nir, et al. (författare)
  • Stable membrane orientations of small dual-topology membrane proteins
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:30, s. 7987-7992
  • Tidskriftsartikel (refereegranskat)abstract
    • The topologies of alpha-helical membrane proteins are generally thought to be determined during their cotranslational insertion into the membrane. It is typically assumed that membrane topologies remain static after this process has ended. Recent findings, however, question this static view by suggesting that some parts of, or even the whole protein, can reorient in the membrane on a biologically relevant time scale. Here, we focus on antiparallel homo- or heterodimeric small multidrug resistance proteins and examine whether the individual monomers can undergo reversible topological inversion (flip flop) in the membrane until they are trapped in a fixed orientation by dimerization. By perturbing dimerization using various means, we show that the membrane orientation of a monomer is unaffected by the presence or absence of its dimerization partner. Thus, membrane-inserted monomers attain their final orientations independently of dimerization, suggesting that wholesale topological inversion is an unlikely event in vivo.
  •  
5.
  • Jaud, Simon, et al. (författare)
  • Insertion of short transmembrane helices by the Sec61 translocon
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:28, s. 11588-11593
  • Tidskriftsartikel (refereegranskat)abstract
    • The insertion efficiency of transmembrane (TM) helices by the Sec61 translocon depends on helix amino acid composition, the positions of the amino acids within the helix, and helix length. We have used an in vitro expression system to examine systematically the insertion efficiency of short polyleucine segments (L(n), n = 4 ... 12) flanked at either end by 4-residue sequences of the form XXPX-L(n)-XPXX with X = G, N, D, or K. Except for X = K, insertion efficiency (p) is <10% for n < 8, but rises steeply to 100% for n = 12. For X = K, p is already close to 100% for n = 10. A similar pattern is observed for synthetic peptides incorporated into oriented phospholipid bilayer arrays, consistent with the idea that recognition of TM segments by the translocon critically involves physical partitioning of nascent peptide chains into the lipid bilayer. Molecular dynamics simulations suggest that insertion efficiency is determined primarily by the energetic cost of distorting the bilayer in the vicinity of the TM helix. Very short lysine-flanked leucine segments can reduce the energetic cost by extensive hydrogen bonding with water and lipid phosphate groups (snorkeling) and by partial unfolding.
  •  
6.
  • Kemp, Grant, et al. (författare)
  • Cotranslational folding cooperativity of contiguousdomains of α-spectrin
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:25, s. 14119-14126
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other’s folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.
  •  
7.
  • Kim, Hyun, et al. (författare)
  • A global topology map of the Saccharomyces cerevisiae membrane proteome
  • 2006
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 103:30, s. 11142-11147
  • Tidskriftsartikel (refereegranskat)abstract
    • The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to ≈15,000 membrane proteins from 38 fully sequenced eukaryotic genomes.
  •  
8.
  • Lerch-Bader, Mirjam, et al. (författare)
  • Contribution of positively charged flanking residues to the insertion of transmembrane helices into the endoplasmic reticulum
  • 2008
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 105:11, s. 4127-4132
  • Tidskriftsartikel (refereegranskat)abstract
    • Positively charged residues located near the cytoplasmic end of hydrophobic segments in membrane proteins promote membrane insertion and formation of transmembrane alpha-helices. A quantitative understanding of this effect has been lacking, however. Here, using an in vitro transcription-translation system to study the insertion of model hydrophobic segments into dog pancreatic rough microsomes, we show that a single Lys or Arg residue typically contributes approximately -0.5 kcal/mol to the apparent free energy of membrane insertion (DeltaG(app)) when placed near the cytoplasmic end of a hydrophobic segment and that stretches of 3-6 Lys residues can contribute significantly to DeltaG(app) from a distance of up to approximately 13 residues away.
  •  
9.
  • Lundin, Carolina, et al. (författare)
  • Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N-in-C-out and N-out-C-in transmembrane helices
  • 2008
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 105:41, s. 15702-15707
  • Tidskriftsartikel (refereegranskat)abstract
    • Transmembrane alpha-helices in integral membrane proteins can have two orientations in the membrane: N(in)-C(out) or N(out)-C(in). Previous studies of model N(out)-C(in) transmembrane segment have led to a detailed, quantitative picture of the "molecular code" that relates amino acid sequence to membrane insertion efficiency in vivo [Hessa T, et al. (2007) Molecular code for transmembrane helix recognition by the Sec61 translocon. Nature 450:1026-1030], but whether the same code applies also to N(in)-C(out) transmembrane helices is unknown. Here, we show that the contributions of individual amino acids to the overall efficiency of membrane insertion are similar for the two kinds of helices and that the threshold hydrophobicity for membrane insertion can be up to approximately 1 kcal/mol lower for N(in)-C(out) compared with N(out)-C(in) transmembrane helices, depending on the neighboring helices.
  •  
10.
  • Mermans, Daphne, et al. (författare)
  • Cotranslational folding and assembly of the dimeric Escherichia coli inner membrane protein EmrE
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:35
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, it has become clear that many homo- and heterodimeric cytoplasmic proteins in both prokaryotic and eukaryotic cells start to dimerize cotranslationally (i.e., while at least one of the two chains is still attached to the ribosome). Whether this is also possible for integral membrane proteins is, however, unknown. Here, we apply force profile analysis (FPA)—a method where a translational arrest peptide (AP) engineered into the polypeptide chain is used to detect force generated on the nascent chain during membrane insertion—to demonstrate cotranslational interactions between a fully membrane-inserted monomer and a nascent, ribosome-tethered monomer of the Escherichia coli inner membrane protein EmrE. Similar cotranslational interactions are also seen when the two monomers are fused into a single polypeptide. Further, we uncover an apparent intrachain interaction between E14 in transmembrane helix 1 (TMH1) and S64 in TMH3 that forms at a precise nascent chain length during cotranslational membrane insertion of an EmrE monomer. Like soluble proteins, inner membrane proteins thus appear to be able to both start to fold and start to dimerize during the cotranslational membrane insertion process. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy