SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0040 6090 OR L773:1879 2731 ;pers:(Högberg Hans)"

Sökning: L773:0040 6090 OR L773:1879 2731 > Högberg Hans

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alami, Jones, et al. (författare)
  • High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target
  • 2006
  • Ingår i: Thin Solid Films. - : Institutionen för fysik, kemi och biologi. - 0040-6090 .- 1879-2731. ; 515:4, s. 1731-1736
  • Tidskriftsartikel (refereegranskat)abstract
    • We have deposited Ti-Si-C thin films using high-power impulse magnetron sputtering (HIPIMS) from a Ti3SiC2 compound target. The as-deposited films were composite materials with TiC as the main crystalline constituent. X-ray diffraction and photoelectron spectroscopy indicated that they also contained amorphous SiC, and for films deposited on inclined substrates, crystalline Ti5Si3Cx. The film morphology was dense and flat, while films deposited with dc magnetron sputtering under comparable conditions were rough and porous. Due to the high degree of ionization of the sputtered species obtained in HIPIMS, it is possible to control the film composition, in particular the C content, by tuning the substrate inclination angle, the Ar process pressure, and the bias voltage.
  •  
2.
  • Eklund, Per, et al. (författare)
  • The Mn + 1AXn phases : Materials science and thin-film processing
  • 2010
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 518:8, s. 1851-1878
  • Forskningsöversikt (refereegranskat)abstract
    • This article is a Critical review of the M(n + 1)AX(n) phases ("MAX phases", where n = 1, 2, or 3) from a materials science perspective. MAX phases are a class of hexagonal-structure ternary carbides and nitrides ("X") of a transition metal ("M") and an A-group element. The most well known are Ti2AlC, Ti3SiC2, and Ti4AlN3. There are similar to 60 MAX phases with at least 9 discovered in the last five years alone. What makes the MAX phases fascinating and potentially useful is their remarkable combination of chemical, physical, electrical, and mechanical properties, which in many ways combine the characteristics of metals and ceramics. For example, MAX phases are typically resistant to oxidation and corrosion, elastically stiff, but at the same time they exhibit high thermal and electrical conductivities and are machinable. These properties stem from an inherently nanolaminated crystal structure, with M1 + nXn slabs intercalated with pure A-element layers. The research on MAX phases has been accelerated by the introduction of thin-film processing methods. Magnetron sputtering and arc deposition have been employed to synthesize single-crystal material by epitaxial growth, which enables studies of fundamental material properties. However, the surface-initiated decomposition of M(n + 1)AX(n) thin films into MX compounds at temperatures of 1000-1100 degrees C is much lower than the decomposition temperatures typically reported for the corresponding bulk material. We also review the prospects for low-temperature synthesis, which is essential for deposition of MAX phases onto technologically important substrates. While deposition of MAX phases from the archetypical Ti-Si-C and Ti-Al-N systems typically requires synthesis temperatures of similar to 800 degrees C, recent results have demonstrated that V2GeC and Cr2AlC can be deposited at similar to 450 degrees C. Also, thermal spray of Ti2AlC powder has been used to produce thick coatings. We further treat progress in the use of first-principle calculations for predicting hypothetical MAX phases and their properties. Together with advances in processing and materials analysis, this progress has led to recent discoveries of numerous new MAX phases such as Ti4SiC3, Ta4AlC3. and Ti3SnC2. Finally, important future research directions are discussed. These include charting the unknown regions in phase diagrams to discover new equilibrium and metastable phases, as well as research challenges in understanding their physical properties, such as the effects of anisotropy, impurities, and vacancies on the electrical properties, and unexplored properties such as Superconductivity, magnetism, and optics.
  •  
3.
  • Frodelius, Jenny, et al. (författare)
  • Sputter deposition from a Ti2AlC target: Process characterization and conditions for growth of Ti2AlC
  • 2010
  • Ingår i: Thin Solid Films. - : Elsevier. - 0040-6090 .- 1879-2731. ; 518:6, s. 1621-1626
  • Tidskriftsartikel (refereegranskat)abstract
    • Sputter deposition from a Ti2AlC target was found to yield Ti-Al-C films with a composition that deviates from the target composition of 2:1:1. For increasing substrate temperature from ambient to 1000 degrees C, the Al content decreased from 22 at.% to 5 at.%, due to re-evaporation. The C content in as-deposited films was equal to or higher than the Ti content. Mass spectrometry of the plasma revealed that the Ti and Al species were essentially thermalized, while a large fraction of C with energies andgt;4 eV was detected. Co-sputtering with Ti yielded a film stoichiometry of 2:0.8:0.9 for Ti:Al:C, which enabled growth of Ti2AlC. These results indicate that an additional Ti flux balances the excess C and therefore provides for more stoichiometric Ti2AlC synthesis conditions.
  •  
4.
  • Furlan, Andrej, et al. (författare)
  • Fullerene–like CPx : A first–principles study of the relative stability of precursors and defect energetics during synthetic growth
  • 2006
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 515:3, s. 1028-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherently nanostructured CPx compounds were studied by first-principles calculations. Geometry optimizations and cohesive energy comparisons show stability for C3P, C2P, C3P2, CP, and P4 (P2) species in isolated form as well as incorporated in graphene layers. The energy cost for structural defects, arising from the substitution of C for P and intercalation of P atoms in graphene, was also evaluated. We find a larger curvature of the graphene sheets and a higher density of cross-linkage sites in comparison to fullerene-like (FL) CNx, which is explained by differences in the bonding between P and N. Thus, the computational results extend the scope of fullerene-like thin film materials with FL-CPx and provide insights for its structural properties.
  •  
5.
  • Furlan, Andrej, 1974-, et al. (författare)
  • Structure and properties of phosphorus-carbide thin solid films
  • 2013
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 548:2, s. 247-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorus-carbide (CPx) thin films have been deposited by unbalanced reactive magnetron sputtering and investigated by TEM, XPS, SEM, ERDA, Raman scattering spectroscopy, nanoindentation testing, and four-point electrical probe techniques. As-deposited films with x=0.1 are electron amorphous with elements of FL structure and high mechanical resiliency with hardness of 34.4 GPa and elastic recovery of 72%. The electrical resistivity of the films are in the range 0.4-1.7 Ωcm for CP0.027, 1.4-22.9 Ωcm for CP0.1, and lower than the minimal value the four-point probe is able to detect for CPx with x≥0.2.
  •  
6.
  • Magnuson, Martin, 1965-, et al. (författare)
  • ­Chemical Bonding in Epitaxial ZrB2 Studied by X-ray Spectroscopy
  • 2018
  • Ingår i: Thin Solid Films. - : Elsevier. - 0040-6090 .- 1879-2731. ; 649, s. 89-96
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical bonding in an epitaxial ZrB2 film is investigated by Zr K-edge (1s) X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies and compared to the ZrB2 compound target from which the film was synthesized as well as a bulk α-Zr reference. Quantitative analysis of X-ray Photoelectron Spectroscopy spectra reveals at the surface: ~5% O in the epitaxial ZrB2 film, ~19% O in the ZrB2 compound target and ~22% O in the bulk α-Zr reference after completed sputter cleaning. For the ZrB2 compound target, X-ray diffraction (XRD) shows weak but visible   11, 111, and 220 peaks from monoclinic ZrO2 together with peaks from ZrB2 and where the intensity distribution for the ZrB2 peaks show a randomly oriented target material.  For the bulk α-Zr reference no peaks from any crystalline oxide were visible in the diffractogram recorded from the 0001-oriented metal. The Zr K-edge absorption from the two ZrB2 samples demonstrate more pronounced oscillations for the epitaxial ZrB2 film than in the bulk ZrB2 attributed to the high atomic ordering within the columns of the film. The XANES exhibits no pre-peak due to lack of p-d hybridization in ZrB2, but with a chemical shift towards higher energy of 4 eV in the film and 6 eV for the bulk compared to α-Zr (17.993 keV) from the charge-transfer from Zr to B. The 2 eV larger shift in bulk ZrB2 material suggests higher oxygen content than in the epitaxial film, which is supported by XPS. In EXAFS, the modelled cell-edge in ZrB2 is slightly smaller in the thin film (a=3.165 Å, c=3.520 Å) in comparison to the bulk target material (a=3.175 Å, c=3.540 Å) while in hexagonal closest-packed metal (α-phase, a=3.254 Å, c=5.147 Å). The modelled coordination numbers show that the EXAFS spectra of the epitaxial ZrB2 film is highly anisotropic with strong in-plane contribution, while the bulk target material is more isotropic. The Zr-B distance in the film of 2.539 Å is in agreement with the calculated value from XRD data of 2.542 Å. This is slightly shorter compared to that in the ZrB2 compound target 2.599 Å, supporting the XANES results of a higher atomic order within the columns of the film compared to bulk ZrB2.
  •  
7.
  • Magnuson, Martin, 1965-, et al. (författare)
  • Reactive magnetron sputtering of tungsten target in krypton/trimethylboron atmosphere
  • 2019
  • Ingår i: Thin Solid Films. - : Elsevier. - 0040-6090 .- 1879-2731. ; 688
  • Tidskriftsartikel (refereegranskat)abstract
    • W-B-C films were deposited on Si(100) substrates held at elevated temperature by reactive sputtering from a W target in Kr/trimethylboron (TMB) plasmas. Quantitative analysis by Xray photoelectron spectroscopy (XPS) shows that the films are W-rich between ~ 73 and ~ 93 at.% W. The highest metal content is detected in the film deposited with 1 sccm TMB. The C and B concentrations increase with increasing TMB flow to a maximum of ~18 and ~7 at.%, respectively, while the O content remains nearly constant at 2-3 at.%. Chemical bonding structure analysis performed after samples sputter-cleaning reveals C-W and B-W bonding and no detectable W-O bonds. During film growth with 5 sccm TMB and 500 o C or with 10 sccm TMB and 300-600 o C thin film X-ray diffraction shows the formation of cubic 100-oriented WC1-x with a possible solid solution of B. Lower flows and lower growth temperatures favor growth of W and W2C, respectively. Depositions at 700 and 800 o C result in the formation of WSi2 due to a reaction with the substrate. At 900 o C, XPS analysis shows ~96 at.% Si in the film due to Si interdiffusion. Scanning electron microscopy images reveal a fine-grained microstructure for the deposited WC1-x films. Nanoindentation gives hardness values in the range from ~23 to ~31 GPa and reduced elastic moduli between ~220 and 280 GPa in the films deposited at temperatures lower than 600 o C. At higher growth temperatures the hardness decreases by a factor of 3 to 4 following the formation of WSi2 at 700-800 o C and Si-rich surface at 900 o C.
  •  
8.
  • Neidhardt, Jörg, 1976-, et al. (författare)
  • Cryogenic deposition of carbon nitride thin solid films by reactive magnetron sputtering, Suppression of the chemical desorption processes
  • 2005
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 478:1-2, s. 34-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructured fullerene-like carbon nitride (FL CNx) is commonly grown by reactive magnetron sputtering of carbon in a nitrogen-containing atmosphere. The film structure formation for this technique is presumably due to the existence of preformed molecular CxNy (x,y≤2) species in the deposition flux, which act as growth templates and enhance the selectivity of chemical desorption processes. In the present study, the extent of the desorption processes and the implications on the resulting film have been investigated in detail, addressing in particular the structure evolution and the origin of the incorporated nitrogen. This was studied by varying the N2-fraction in the discharge from 0 to 1 and the substrate temperature from 600 °C (873 K) down to minus 130 °C (143 K). The results show that the incorporation rate of carbon and nitrogen into the film increases substantially with an increased N2-content in the plasma and decreasing substrate temperature, thus indicating that the chemistry and magnitude of the arriving flux is substantially altered with the N2-fraction in the discharge. It is concluded that the chemically activated desorption in conjunction with the varying chemistry of the film-forming flux affects the sensitive structural balance, determined by incorporation and desorption of film forming CxNy (x,y≤2) species.
  •  
9.
  • Nyberg, Tomas, et al. (författare)
  • A simple model for non-saturated reactive sputtering processes
  • 2019
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 688
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive sputtering processes are quite complex processes and therefore difficult to understand in detail. However, a number of attempts to clearify the behaviour of reactive sputtering of oxides and nitrides have been made. Several process modelling results for such processes have been published that reasonable well mirrors the actual experimental findings. All of these models indicate that the processes normally exhibit hysteresis effects and that the oxides/nitrides will saturate at the stoichiometric compound values. We therefore call these processes saturated reactive sputtering processes. Carrying out reactive sputtering in a hydrocarbon gas like CH4 instead of in oxygen or nitrogen cannot be described with the previously suggested models for oxide or nitride formations. Decomposition of the CH4 molecule in the plasma may result both in carbide formation with the target metal as well as plasma deposited carbon. Depending on the supply of the CH4 the deposited film composition may vary from 0 to 100% of carbon. In the extreme case of very high supply of CH4 a pure carbon film will be deposited. We expect that similar behaviour will be found when carrying out reactive sputtering in other solid material containing gases like e.g. silane or diborane. We have chosen to call such processes non-saturated reactive sputtering processes. In order to understand the behaviour of non-saturated reactive sputtering processes we have developed a new model that enables the user to find the response to individual processing parameters and thus obtain a tool for process optimization. In order to limit the number of parameters our model is outlined for reactive sputtering of Ti in a mixture of argon and CH4. In this article we report that the simulation results reasonable well correlate with our experimental findings.
  •  
10.
  • Pedersen, Henrik, et al. (författare)
  • On the effect of water and oxygen in chemical vapor deposition of boron nitride
  • 2012
  • Ingår i: Thin Solid Films. - : Elsevier. - 0040-6090 .- 1879-2731. ; 520:18, s. 5889-5893
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth studies of sp(2)-hybridized boron nitride (BN) phases by thermal chemical vapor deposition (CVD) are presented; of particular interest is the presence of oxygen and water during growth. While Fourier transform infrared spectroscopy reveals the presence of B-N bonds and elemental analysis by elastic recoil detection analysis shows that the films are close to stoichiometric, although containing a few atomic percent oxygen and hydrogen, X-ray diffraction measurements show no indications for nucleation of any crystalline BN phases, despite change in N/B-ratio and/or process temperature. Thermodynamic modeling suggests that this is due to formation of strong B-O bonds already in the gas phase in the presence of water or oxygen during growth. This growth behavior is believed to be caused by an uncontrolled release of water and/or oxygen in the deposition chamber and highlights the sensitivity of the BN CVD process towards oxygen and water.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy