1. |
- Ajello, M., et al.
(författare)
-
First Fermi-LAT Solar Flare Catalog
- 2021
-
Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 252:2
-
Tidskriftsartikel (refereegranskat)abstract
- We present the first Fermi-Large Area Telescope (LAT) solar flare catalog covering the 24th solar cycle. This catalog contains 45 Fermi-LAT solar flares (FLSFs) with emission in the gamma-ray energy band (30 MeV-10 GeV) detected with a significance of >= 5 sigma over the years 2010-2018. A subsample containing 37 of these flares exhibits delayed emission beyond the prompt-impulsive hard X-ray phase, with 21 flares showing delayed emission lasting more than two hours. No prompt-impulsive emission is detected in four of these flares. We also present in this catalog observations of GeV emission from three flares originating from active regions located behind the limb of the visible solar disk. We report the lightcurves, spectra, best proton index, and localization (when possible) for all FLSFs. The gamma-ray spectra are consistent with the decay of pions produced by >300 MeV protons. This work contains the largest sample of high-energy gamma-ray flares ever reported and provides a unique opportunity to perform population studies on the different phases of the flare and thus allowing a new window in solar physics to be opened.
|
|
2. |
- Abdo, A. A., et al.
(författare)
-
Fermi LAT Observation of Diffuse Gamma Rays Produced Through Interactions Between Local Interstellar Matter and High-energy Cosmic Rays
- 2009
-
Ingår i: Astrophysical Journal Supplement Series. - 0067-0049 .- 1538-4365. ; 703:2, s. 1249-1256
-
Tidskriftsartikel (refereegranskat)abstract
- Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse γ-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200° to 260° and latitude |b| from 22° to 60°) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of γ-ray point sources and inverse Compton scattering are estimated and subtracted. The residual γ-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated γ-ray emissivity is (1.63 ± 0.05) × 10-26 photons s-1sr-1 H-atom-1 and (0.66 ± 0.02) × 10-26 photons s-1sr-1 H-atom-1 above 100 MeV and above 300 MeV, respectively, with an additional systematic error of ~10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within ~10%.
|
|
3. |
- Ahumada, Romina, et al.
(författare)
-
The 16th Data Release of the Sloan Digital Sky Surveys : First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra
- 2020
-
Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 249:1
-
Tidskriftsartikel (refereegranskat)abstract
- This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).
|
|
4. |
- Stopyra, Stephen, et al.
(författare)
-
GenetIC—A New Initial Conditions Generator to Support Genetically Modified Zoom Simulations
- 2021
-
Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 252:2
-
Tidskriftsartikel (refereegranskat)abstract
- We present genetIC, a new code for generating initial conditions for cosmological N-body simulations. The code allows precise, user-specified alterations to be made to arbitrary regions of the simulation (while maintaining consistency with the statistical ensemble). These genetic modifications allow, for example, the history, mass, or environment of a target halo to be altered in order to study the effect on their evolution. The code natively supports initial conditions with nested zoom regions at progressively increasing resolution. Modifications in the high-resolution region must propagate self-consistently onto the lower-resolution grids; to enable this while maintaining a small memory footprint, we introduce a Fourier-space filtering approach to generating fields at variable resolution. Due to a close correspondence with modifications, constrained initial conditions can also be produced by genetIC (for example, with the aim of matching structures in the local universe). We test the accuracy of modifications performed within zoom initial conditions. The code achieves subpercent precision, which is easily sufficient for current applications in galaxy formation.
|
|
5. |
- Holmes, Charlotte, et al.
(författare)
-
Experimentally Measured Radiative Lifetimes and Oscillator Strengths in Neutral Vanadium
- 2016
-
Ingår i: Astrophysical Journal Supplement Series. - : Bibliopolis, Edizioni di Filosofia e Scienze. - 0067-0049 .- 1538-4365. ; 224:2
-
Tidskriftsartikel (refereegranskat)abstract
- We report a new study of the V i atom using a combination of time-resolved laser-induced fluorescence and Fourier transform spectroscopy that contains newly measured radiative lifetimes for 25 levels between 24,648 cm-1 and 37,518 cm-1 and oscillator strengths for 208 lines between 3040 and 20000 Å from 39 upper energy levels. Thirteen of these oscillator strengths have not been reported previously. This work was conducted independently of the recent studies of neutral vanadium lifetimes and oscillator strengths carried out by Den Hartog et al. and Lawler et al., and thus serves as a means to verify those measurements. Where our data overlap with their data, we generally find extremely good agreement in both level lifetimes and oscillator strengths. However, we also find evidence that Lawler et al. have systematically underestimated oscillator strengths for lines in the region of 9000 ± 100 Å. We suggest a correction of 0.18 ± 0.03 dex for these values to bring them into agreement with our results and those of Whaling et al. We also report new measurements of hyperfine structure splitting factors for three odd levels of V i lying between 24,700 and 28,400 cm-1.
|
|
6. |
- Abolfathi, Bela, et al.
(författare)
-
The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
- 2018
-
Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
-
Tidskriftsartikel (refereegranskat)abstract
- The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
|
|
7. |
- Aguado, D. S., et al.
(författare)
-
The Fifteenth Data Release of the Sloan Digital Sky Surveys : First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
- 2019
-
Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 240:2
-
Tidskriftsartikel (refereegranskat)abstract
- Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July-2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA-we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020-2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.
|
|
8. |
- Narendra, Aditya, et al.
(författare)
-
Predicting the Redshift of Gamma-Ray Loud AGNs Using Supervised Machine Learning. II
- 2022
-
Ingår i: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 259:2
-
Tidskriftsartikel (refereegranskat)abstract
- Measuring the redshift of active galactic nuclei (AGNs) requires the use of time-consuming and expensive spectroscopic analysis. However, obtaining redshift measurements of AGNs is crucial as it can enable AGN population studies, provide insight into the star formation rate, the luminosity function, and the density rate evolution. Hence, there is a requirement for alternative redshift measurement techniques. In this project, we aim to use the Fermi Gamma-ray Space Telescope's 4LAC Data Release 2 catalog to train a machine-learning (ML) model capable of predicting the redshift reliably. In addition, this project aims at improving and extending with the new 4LAC Catalog the predictive capabilities of the ML methodology published in Dainotti et al. Furthermore, we implement feature engineering to expand the parameter space and a bias correction technique to our final results. This study uses additional ML techniques inside the ensemble method, the SuperLearner, previously used in Dainotti et al. Additionally, we also test a novel ML model called Sorted L-One Penalized Estimation. Using these methods, we provide a catalog of estimated redshift values for those AGNs that do not have a spectroscopic redshift measurement. These estimates can serve as a redshift reference for the community to verify as updated Fermi catalogs are released with more redshift measurements.
|
|
9. |
- Pinsonneault, Marc H., et al.
(författare)
-
The Second APOKASC Catalog : The Empirical Approach
- 2018
-
Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 239:2
-
Tidskriftsartikel (refereegranskat)abstract
- We present a catalog of stellar properties for a large sample of 6676 evolved stars with Apache Point Observatory Galactic Evolution Experiment spectroscopic parameters and Kepler asteroseismic data analyzed using five independent techniques. Our data include evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing (Av) scaling relation, and we calibrate the zero-point of the frequency of the maximum power (vmax) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4%. Median random and systematic mass uncertainties are at the 9% and 8% level, respectively, for red clump stars.
|
|
10. |
-
The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
- 2022
-
Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
-
Tidskriftsartikel (refereegranskat)abstract
- This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
|
|