SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0094 2405 OR L773:2473 4209 ;spr:eng"

Search: L773:0094 2405 OR L773:2473 4209 > English

  • Result 1-10 of 339
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Al-Hallaq, Hania A., et al. (author)
  • AAPM task group report 302 : Surface-guided radiotherapy
  • 2022
  • In: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 49:4, s. 82-112
  • Journal article (peer-reviewed)abstract
    • The clinical use of surface imaging has increased dramatically, with demonstrated utility for initial patient positioning, real-time motion monitoring, and beam gating in a variety of anatomical sites. The Therapy Physics Subcommittee and the Imaging for Treatment Verification Working Group of the American Association of Physicists in Medicine commissioned Task Group 302 to review the current clinical uses of surface imaging and emerging clinical applications. The specific charge of this task group was to provide technical guidelines for clinical indications of use for general positioning, breast deep-inspiration breath hold treatment, and frameless stereotactic radiosurgery. Additionally, the task group was charged with providing commissioning and on-going quality assurance (QA) requirements for surface-guided radiation therapy (SGRT) as part of a comprehensive QA program including risk assessment. Workflow considerations for other anatomic sites and for computed tomography simulation, including motion management, are also discussed. Finally, developing clinical applications, such as stereotactic body radiotherapy (SBRT) or proton radiotherapy, are presented. The recommendations made in this report, which are summarized at the end of the report, are applicable to all video-based SGRT systems available at the time of writing.
  •  
2.
  •  
3.
  • Andersén, Christoffer, 1991-, et al. (author)
  • Deep learning based digitisation of prostate brachytherapy needles in ultrasound images
  • 2020
  • In: Medical physics. - : Wiley-Blackwell Publishing Inc.. - 2473-4209 .- 0094-2405. ; 47:12, s. 6414-6420
  • Journal article (peer-reviewed)abstract
    • PURPOSE: To develop, and evaluate the performance of, a deep learning based 3D convolutional neural network (CNN) artificial intelligence (AI) algorithm aimed at finding needles in ultrasound images used in prostate brachytherapy.METHODS: Transrectal ultrasound (TRUS) image volumes from 1102 treatments were used to create a clinical ground truth (CGT) including 24422 individual needles that had been manually digitised by medical physicists during brachytherapy procedures. A 3D CNN U-net with 128x128x128 TRUS image volumes as input was trained using 17215 needle examples. Predictions of voxels constituting a needle were combined to yield a 3D linear function describing the localisation of each needle in a TRUS volume. Manual and AI digitisations were compared in terms of the root-mean-square distance (RMSD) along each needle, expressed as median and interquartile range (IQR). The method was evaluated on a dataset including 7207 needle examples. A subgroup of the evaluation data set (n=188) was created, where the needles were digitised once more by a medical physicist (G1) trained in brachytherapy. The digitisation procedure was timed.RESULTS: The RMSD between the AI and CGT was 0.55 (IQR: 0.35-0.86) mm. In the smaller subset, the RMSD between AI and CGT was similar (0.52 [IQR: 0.33-0.79] mm) but significantly smaller (p<0.001) than the difference of 0.75 (IQR: 0.49-1.20) mm between AI and G1. The difference between CGT and G1 was 0.80 (IQR: 0.48-1.18) mm, implying that the AI performed as well as the CGT in relation to G1. The mean time needed for human digitisation was 10 min 11 sec, while the time needed for the AI was negligible.CONCLUSIONS: A 3D CNN can be trained to identify needles in TRUS images. The performance of the network was similar to that of a medical physicist trained in brachytherapy. Incorporating a CNN for needle identification can shorten brachytherapy treatment procedures substantially.
  •  
4.
  •  
5.
  • Andersson, Jonas, 1975-, et al. (author)
  • Estimation of patient skin dose in fluoroscopy : summary of a joint report by AAPM TG357 and EFOMP
  • 2021
  • In: Medical physics (Lancaster). - : John Wiley & Sons. - 0094-2405 .- 2473-4209. ; 48:7, s. e671-e696
  • Journal article (peer-reviewed)abstract
    • Background: Physicians use fixed C-arm fluoroscopy equipment with many interventional radiological and cardiological procedures. The associated effective dose to a patient is generally considered low risk, as the benefit-risk ratio is almost certainly highly favorable. However, X-ray-induced skin injuries may occur due to high absorbed patient skin doses from complex fluoroscopically guided interventions (FGI). Suitable action levels for patient-specific follow-up could improve the clinical practice. There is a need for a refined metric regarding follow-up of X-ray-induced patient injuries and the knowledge gap regarding skin dose-related patient information from fluoroscopy devices must be filled. The most useful metric to indicate a risk of erythema, epilation or greater skin injury that also includes actionable information is the peak skin dose, that is, the largest dose to a region of skin.Materials and Methods: The report is based on a comprehensive review of best practices and methods to estimate peak skin dose found in the scientific literature and situates the importance of the Digital Imaging and Communication in Medicine (DICOM) standard detailing pertinent information contained in the Radiation Dose Structured Report (RDSR) and DICOM image headers for FGI devices. Furthermore, the expertise of the task group members and consultants have been used to bridge and discuss different methods and associated available DICOM information for peak skin dose estimation.Results: The report contributes an extensive summary and discussion of the current state of the art in estimating peak skin dose with FGI procedures with regard to methodology and DICOM information. Improvements in skin dose estimation efforts with more refined DICOM information are suggested and discussed.Conclusions: The endeavor of skin dose estimation is greatly aided by the continuing efforts of the scientific medical physics community, the numerous technology enhancements, the dose-controlling features provided by the FGI device manufacturers, and the emergence and greater availability of the DICOM RDSR. Refined and new dosimetry systems continue to evolve and form the infrastructure for further improvements in accuracy. Dose-related content and information systems capable of handling big data are emerging for patient dose monitoring and quality assurance tools for large-scale multihospital enterprises.
  •  
6.
  • Andersson, Karin M., 1989-, et al. (author)
  • Evaluation of two commercial CT metal artifact reduction algorithms for use in proton radiotherapy treatment planning in the head and neck area
  • 2018
  • In: Medical physics (Lancaster). - : Wiley-Blackwell Publishing Inc.. - 0094-2405 .- 2473-4209. ; 45:10, s. 4329-4344
  • Journal article (peer-reviewed)abstract
    • PURPOSE: To evaluate two commercial CT metal artifact reduction (MAR) algorithms for use in proton treatment planning in the head and neck (H&N) area.METHODS: An anthropomorphic head phantom with removable metallic implants (dental fillings or neck implant) was CT-scanned to evaluate the O-MAR (Philips) and the iMAR (Siemens) algorithms. Reference images were acquired without any metallic implants in place. Water equivalent thickness (WET) was calculated for different path directions and compared between image sets. Images were also evaluated for use in proton treatment planning for parotid, tonsil, tongue base, and neck node targets. The beams were arranged so as to not traverse any metal prior to the target, enabling evaluation of the impact on dose calculation accuracy from artifacts surrounding the metal volume. Plans were compared based on γ analysis (1 mm distance-to-agreement/1% difference in local dose) and dose volume histogram metrics for targets and organs at risk (OARs). Visual grading evaluation of 30 dental implant patient MAR images was performed by three radiation oncologists.RESULTS: In the dental fillings images, ΔWET along a low-density streak was reduced from -17.0 to -4.3 mm with O-MAR and from -16.1 mm to -2.3 mm with iMAR, while for other directions the deviations were increased or approximately unchanged when the MAR algorithms were used. For the neck implant images, ΔWET was generally reduced with MAR but residual deviations remained (of up to -2.3 mm with O-MAR and of up to -1.5 mm with iMAR). The γ analysis comparing proton dose distributions for uncorrected/MAR plans and corresponding reference plans showed passing rates >98% of the voxels for all phantom plans. However, substantial dose differences were seen in areas of most severe artifacts (γ passing rates of down to 89% for some cases). MAR reduced the deviations in some cases, but not for all plans. For a single patient case dosimetrically evaluated, minor dose differences were seen between the uncorrected and MAR plans (γ passing rate approximately 97%). The visual grading of patient images showed that MAR significantly improved image quality (P < 0.001).CONCLUSIONS: O-MAR and iMAR significantly improved image quality in terms of anatomical visualization for target and OAR delineation in dental implant patient images. WET calculations along several directions, all outside the metallic regions, showed that both uncorrected and MAR images contained metal artifacts which could potentially lead to unacceptable errors in proton treatment planning. ΔWET was reduced by MAR in some areas, while increased or unchanged deviations were seen for other path directions. The proton treatment plans created for the phantom images showed overall acceptable dose distributions differences when compared to the reference cases, both for the uncorrected and MAR images. However, substantial dose distribution differences in the areas of most severe artifacts were seen for some plans, which were reduced by MAR in some cases but not all. In conclusion, MAR could be beneficial to use for proton treatment planning; however, case-by-case evaluations of the metal artifact-degraded images are always recommended.
  •  
7.
  •  
8.
  • Arce, P., et al. (author)
  • Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group
  • 2021
  • In: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 48:1, s. 19-56
  • Journal article (peer-reviewed)abstract
    • Background: Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing. Aims: To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics. Materials and Methods: G4-Med currently includes 18 tests. They range from the benchmarking of fundamental physics quantities to the testing of Monte Carlo simulation setups typical of medical physics applications. Both electromagnetic and hadronic physics processes and models within the prebuilt Geant4 physics lists are tested. The tests included in G4-Med are executed on the CERN computing infrastructure via the use of the geant-val web application, developed at CERN for Geant4 testing. The physical observables can be compared to reference data for benchmarking and to results of previous Geant4 versions for regression testing purposes. Results: This paper describes the tests included in G4-Med and shows the results derived from the benchmarking of Geant4 10.5 against reference data. Discussion: Our results indicate that the Geant4 electromagnetic physics constructor G4EmStandardPhysics_option4 gives a good agreement with the reference data for all the tests. The QGSP_BIC_HP physics list provided an overall adequate description of the physics involved in hadron therapy, including proton and carbon ion therapy. New tests should be included in the next stage of the project to extend the benchmarking to other physical quantities and application scenarios of interest for medical physics. Conclusion: The results presented and discussed in this paper will aid users in tailoring physics lists to their particular application.
  •  
9.
  • Atefi, Seyed Reza, et al. (author)
  • Intracranial haemorrhage alters scalp potential distributions in bioimpedance cerebral monitoring applications : preliminary results from FEM simulation on a realistic head model and human subjects
  • 2016
  • In: Medical Physics. - : American Association of Physicists in Medicine. - 2473-4209 .- 0094-2405. ; 43:2, s. 675-686
  • Journal article (peer-reviewed)abstract
    • Purpose: Current diagnostic neuroimaging for detection of intracranial hemorrhage (ICH) is limited to fixed scanners requiring patient transport and extensive infrastructure support. ICH diagnosis would therefore benefit from a portable diagnostic technology, such as electrical bioimpedance (EBI). Through simulations and patient observation, the authors assessed the influence of unilateral ICH hematomas on quasisymmetric scalp potential distributions in order to establish the feasibility of EBI technology as a potential tool for early diagnosis. Methods: Finite element method (FEM) simulations and experimental leftright hemispheric scalp potential differences of healthy and damaged brains were compared with respect to the asymmetry caused by ICH lesions on quasisymmetric scalp potential distributions. In numerical simulations, this asymmetry was measured at 25 kHz and visualized on the scalp as the normalized potential difference between the healthy and ICH damaged models. Proof-of-concept simulations were extended in a pilot study of experimental scalp potential measurements recorded between 0 and 50 kHz with the authors custom-made bioimpedance spectrometer. Mean leftright scalp potential differences recorded from the frontal, central, and parietal brain regions of ten healthy control and six patients suffering from acute/subacute ICH were compared. The observed differences were measured at the 5% level of significance using the two-sample Welch ttest. Results: The 3D-anatomically accurate FEM simulations showed that the normalized scalp potential difference between the damaged and healthy brain models is zero everywhere on the head surface, except in the vicinity of the lesion, where it can vary up to 5%. The authors preliminary experimental results also confirmed that the leftright scalp potential difference in patients with ICH (e.g., 64 mV) is significantly larger than in healthy subjects (e.g., 20.8 mV; P < 0.05). Conclusions: Realistic, proof-of-concept simulations confirmed that ICH affects quasisymmetric scalp potential distributions. Pilot clinical observations with the authors custom-made bioimpedance spectrometer also showed higher leftright potential differences in the presence of ICH, similar to those of their simulations, that may help to distinguish healthy subjects from ICH patients. Although these pilot clinical observations are in agreement with the computer simulations, the small sample size of this study lacks statistical power to exclude the influence of other possible confounders such as age, ex, and electrode positioning. The agreement with previously published simulation-based and clinical results, however, suggests that EBI technology may be potentially useful for ICH detection.
  •  
10.
  • Ba, Alexandre, et al. (author)
  • Inter-laboratory comparison of channelized hotelling observer computation
  • 2018
  • In: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 45:7, s. 3019-3030
  • Journal article (peer-reviewed)abstract
    • Purpose: The task-based assessment of image quality using model observers is increasingly used for the assessment of different imaging modalities. However, the performance computation of model observers needs standardization as well as a well-established trust in its implementation methodology and uncertainty estimation. The purpose of this work was to determine the degree of equivalence of the channelized Hotelling observer performance and uncertainty estimation using an intercomparison exercise. Materials and Methods: Image samples to estimate model observer performance for detection tasks were generated from two-dimensional CT image slices of a uniform water phantom. A common set of images was sent to participating laboratories to perform and document the following tasks: (a) estimate the detectability index of a well-defined CHO and its uncertainty in three conditions involving different sized targets all at the same dose, and (b) apply this CHO to an image set where ground truth was unknown to participants (lower image dose). In addition, and on an optional basis, we asked the participating laboratories to (c) estimate the performance of real human observers from a psychophysical experiment of their choice. Each of the 13 participating laboratories was confidentially assigned a participant number and image sets could be downloaded through a secure server. Results were distributed with each participant recognizable by its number and then each laboratory was able to modify their results with justification as model observer calculation are not yet a routine and potentially error prone. Results: Detectability index increased with signal size for all participants and was very consistent for 6 mm sized target while showing higher variability for 8 and 10 mm sized target. There was one order of magnitude between the lowest and the largest uncertainty estimation. Conclusions: This intercomparison helped define the state of the art of model observer performance computation and with thirteen participants, reflects openness and trust within the medical imaging community. The performance of a CHO with explicitly defined channels and a relatively large number of test images was consistently estimated by all participants. In contrast, the paper demonstrates that there is no agreement on estimating the variance of detectability in the training and testing setting.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 339
Type of publication
journal article (309)
conference paper (25)
research review (4)
doctoral thesis (1)
Type of content
peer-reviewed (292)
other academic/artistic (47)
Author/Editor
Karlsson, Mikael (19)
Andreo, P (19)
Carlsson Tedgren, Ås ... (17)
Ahnesjö, Anders (16)
Danielsson, Mats (15)
Poludniowski, G (14)
show more...
Maguire Jr., Gerald ... (13)
Noz, Marilyn E. (13)
Papanikolaou, N (13)
Knöös, Tommy (11)
Nyholm, Tufve (11)
Mavroidis, Panayioti ... (10)
Mavroidis, P (10)
Alm Carlsson, Gudrun (10)
Ceberg, Crister (10)
Båth, Magnus, 1974 (9)
Ljungberg, Michael (7)
Ahnesjö, Anders, 195 ... (7)
Toma-Daşu, Iuliana (7)
Bujila, R (7)
Bernhardt, Peter, 19 ... (7)
Huq, MS (6)
Palmans, H (6)
Seuntjens, J (6)
Brahme, Anders (5)
Carlsson Tedgren, Ås ... (5)
Nilsson, Per (5)
Bornefalk, Hans (5)
Traneus, Erik (5)
Zeleznik, Michael P. (5)
Andersson, Jonas, 19 ... (5)
Nowik, P. (5)
Dasu, Alexandru (5)
Gutierrez, A. (4)
Brahme, A (4)
Lundqvist, Hans (4)
Verhaegen, Frank (4)
Petersson, Kristoffe ... (4)
Strand, Sven-Erik (4)
Weber, Lars (4)
Olsson, Lars E (4)
Sandborg, Michael (4)
Danielsson, Mats, Pr ... (4)
Kindblom, Jon, 1969 (4)
Timberg, Pontus (4)
Bassler, Niels (4)
Månsson, Lars Gunnar ... (4)
Mourtada, Firas (4)
Rivard, Mark J. (4)
Thomson, Rowan M. (4)
show less...
University
Karolinska Institutet (113)
Royal Institute of Technology (73)
Lund University (57)
Linköping University (40)
Umeå University (39)
Uppsala University (39)
show more...
Stockholm University (31)
University of Gothenburg (24)
Chalmers University of Technology (3)
Örebro University (2)
University of Borås (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
Research subject (UKÄ/SCB)
Medical and Health Sciences (133)
Natural sciences (91)
Engineering and Technology (42)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view