SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0094 8276 ;pers:(Fuselier S. A.)"

Sökning: L773:0094 8276 > Fuselier S. A.

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artemyev, A. V., et al. (författare)
  • Field-Aligned Currents Originating From the Magnetic Reconnection Region : Conjugate MMS-ARTEMIS Observations
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:12, s. 5836-5844
  • Tidskriftsartikel (refereegranskat)abstract
    • Near-Earth magnetic reconnection reconfigures the magnetotail and produces strong plasma flows that transport plasma sheet particles and electromagnetic energy to the inner magnetosphere. An essential element of such a reconfiguration is strong, transient field-aligned currents. These currents, believed to be generated within the plasma sheet and closed at the ionosphere, are responsible for magnetosphere-ionosphere coupling during substorms. We use conjugate measurements from Magnetospheric Multiscale (MMS) at the plasma sheet boundary (around x approximate to- 10R(E)) and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) at the equator (around x approximate to- 60R(E)) to explore the potential generation region of these currents. We find a clear correlation between the field-aligned current intensity measured by MMS and the tailward plasma sheet flows measured by ARTEMIS. To better understand the origin of this correlation, we compare spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection. The comparison reveals that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between MMS (near-Earth) and ARTEMIS (at lunar distance). A weak correlation between the field-aligned current intensity at MMS and earthward flow magnitudes at ARTEMIS suggests that distant magnetotail reconnection does not significantly contribute to the generation of the observed near-Earth currents. Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system. Plain Language Summary Field-aligned currents connect the Earth magnetotail and ionosphere, proving energy and information transport from the region where main energy release process, magnetic reconnection, occurs to the region where the collisional energy dissipation takes place. Therefore, investigation and modeling of the field-aligned current generation is important problem of the magnetosphere plasma physics. However, field-aligned current investigation requires simultaneous observations of reconnection signatures in the magnetotail and at high latitudes. Simultaneous and conjugate operation of two multispacecraft missions, Magnetospheric Multiscale and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun, for the first time provide an opportunity for such investigation. Combining spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection, we demonstrate that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between near-Earth (Magnetospheric Multiscale location) and lunar distant tail (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun location). Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system.
  •  
2.
  • Breuillard, H., et al. (författare)
  • Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:14, s. 7279-7286
  • Tidskriftsartikel (refereegranskat)abstract
    • Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
  •  
3.
  • Fuselier, S. A., et al. (författare)
  • Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:12, s. 6204-6213
  • Tidskriftsartikel (refereegranskat)abstract
    • When the interplanetary magnetic field is northward for a period of time, O+ from the high-latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual-lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+-rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high-shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high-latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.
  •  
4.
  • Han, D. -S, et al. (författare)
  • Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground all-sky camera
  • 2017
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:16, s. 8130-8139
  • Tidskriftsartikel (refereegranskat)abstract
    • Structured diffuse auroras are often observed near magnetic local noon (MLN), but their generation mechanisms are poorly understood. We have found that two types of structured diffuse auroras with obviously different dynamical properties often coexist near MLN. One type usually drifts from low to high latitude with higher speed and shows pulsation. The other type is always adjacent to the discrete aurora oval and drifts together with nearby discrete aurora with much lower speed. Using coordinated observations from MMS and ground all-sky imagers, we found that the two types of diffuse auroras are well correlated with number density increase of O+ (from the ionosphere) and of He2+ (from magnetosheath) ions, respectively. These observations indicate that mangetosheath particles penetrated into the magnetosphere also can play an important role for producing the dayside diffuse aurora. In addition, for the first time, electron cyclotron harmonic waves are observed associated with dayside diffuse aurora.
  •  
5.
  • Lavraud, B., et al. (författare)
  • Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:7, s. 3042-3050
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on high-resolution measurements from NASA's Magnetospheric Multiscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20 eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
  •  
6.
  • Nakamura, R., et al. (författare)
  • Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4841-4849
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
  •  
7.
  • Oieroset, M., et al. (författare)
  • MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5536-5544
  • Tidskriftsartikel (refereegranskat)abstract
    • We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(i)) width) current sheet (at similar to 12 d(i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
  •  
8.
  • Oieroset, M., et al. (författare)
  • Reconnection With Magnetic Flux Pileup at the Interface of Converging ts at the Magnetopause
  • 2019
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 46:4, s. 1937-1946
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Magnetospheric Multiscale observations of reconnection in a in current sheet at the interface of interlinked flux tubes carried by nverging reconnection jets at Earth's magnetopause. The ion skin pth-scale width of the interface current sheet and the non-frozen-in ns indicate that Magnetospheric Multiscale crossed the reconnection yer near the X-line, through the ion diffusion region. Significant leup of the reconnecting component of the magnetic field in this and ree other events on approach to the interface current sheet was companied by an increase in magnetic shear and decrease in , leading conditions favorable for reconnection at the interface current sheet. e pileup also led to enhanced available magnetic energy per particle d strong electron heating. The observations shed light on the olution and energy release in 3-D systems with multiple reconnection tes. ain Language Summary The Earth and the solar wind magnetic fields terconnect through a process called magnetic reconnection. The newly connected magnetic field lines are strongly bent and accelerate rticles, similar to a rubber band in a slingshot. In this paper we ve used observations from NASA's Magnetospheric MultiScale spacecraft investigate what happens when two of these slingshot-like magnetic eld lines move toward each other and get tangled up. We found that the o bent magnetic field lines tend to orient themselves perpendicular to ch other as they become interlinked and stretched, similar to what bber bands would do. This reorientation allows the interlinked gnetic fields to reconnect again, releasing part of the built-up gnetic energy as strong electron heating. The results are important cause they show how interlinked magnetic fields, which occur in many lar and astrophysics contexts, reconnect and produce enhanced electron ating, something that was not understood before.
  •  
9.
  • Stawarz, J. E., et al. (författare)
  • Intense Electric Fields and Electron-Scale Substructure Within Magnetotail Flux Ropes as Revealed by the Magnetospheric Multiscale Mission
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:17, s. 8783-8792
  • Tidskriftsartikel (refereegranskat)abstract
    • Three flux ropes associated with near-Earth magnetotail reconnection are analyzed using Magnetospheric Multiscale observations. The flux ropes are Earthward propagating with sizes from similar to 3 to 11 ion inertial lengths. Significantly different axial orientations are observed, suggesting spatiotemporal variability in the reconnection and/or flux rope dynamics. An electron-scale vortex, associated with one of the most intense electric fields (E) in the event, is observed within one of the flux ropes. This E is predominantly perpendicular to the magnetic field (B); the electron vortex is frozen-in with E x B drifting electrons carrying perpendicular current and causing a small-scale magnetic enhancement. The vortex is similar to 16 electron gyroradii in size perpendicular to B and potentially elongated parallel to B. The need to decouple the frozen-in vortical motion from the surrounding plasma implies a parallel E at the structure's ends. The formation of frozen-in electron vortices within reconnection-generated flux ropes may have implications for particle acceleration. Plain LanguageSummary The release of magnetic energy into particle motion through magnetic reconnection is a key driver of dynamics in the Earth's magnetosphere and other space plasmas. In order to understand how the released magnetic energy is distributed and ultimately heats the particles, a detailed examination of the structures formed by magnetic reconnection is necessary. One common structure produced by reconnection is a twisted magnetic field known as a flux rope. We use new data from the National Aeronautics and Space Administration's Magnetospheric Multiscale satellites to examine both the large-and small-scale properties of three flux ropes associated with a single reconnection event. The results reveal the intrinsic three-dimensional nature of the overall reconnection event, which may stem either from variability at the reconnection site and/or the subsequent dynamics of the structures after they form. Additionally, the high-resolution measurements reveal a new small-scale structure, namely, a vortex of electrons, inside of one of the flux ropes. The presence of such vortices may contribute to accelerating particles and points to the necessity of better understanding the substructure of flux ropes in order to characterize particle energization in magnetic reconnection.
  •  
10.
  • Toledo-Redondo, S., et al. (författare)
  • Kinetic Interaction of Cold and Hot Protons With an Oblique EMIC Wave Near the Dayside Reconnecting Magnetopause
  • 2021
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of the ion dynamics inside an Alfven branch wave that propagates near the reconnecting dayside magnetopause. The measured frequency, wave normal angle and polarization are consistent with the predictions of a dispersion solver. The magnetospheric plasma contains hot protons (keV), cold protons (eV), plus some heavy ions. While the cold protons follow the magnetic field fluctuations and remain frozen-in, the hot protons are at the limit of magnetization. The cold protons exchange energy back and forth, adiabatically, with the wave fields. The cold proton velocity fluctuations contribute to balance the Hall term fluctuations in Ohm's law, and the wave E field has small ellipticity and right-handed polarization. The dispersion solver indicates that increasing the cold proton density facilitates propagation and amplification of these waves at oblique angles, as for the observed wave. Plain Language Summary The Earth's magnetosphere is a very dilute cloud of charged particles that are trapped in the Earth's magnetic field. This cloud is surrounded by the solar wind, another very dilute gas that flows supersonically throughout the solar system. These two plasmas can couple to each other via magnetic reconnection, a fundamental plasma process that occurs at the dayside region of the interface between the two plasmas. When reconnection occurs, large amounts of energy and particles enter the magnetosphere, driving the near Earth space dynamics and generating, for instance, aurorae. The magnetospheric plasma sources are the solar wind and the Earth's ionosphere. Multiple plasma populations can be found inside the Earth's magnetosphere, depending on the plasma origin and its time history, as well as the magnetospheric forcing of the solar wind. In this study, we show how the presence of multiple particle populations at the interface between the solar wind and the magnetosphere modifies the properties of the waves that propagate there. Waves are known to play a fundamental role in converting energy and heating these very dilute charged gas clouds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy