SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0094 8276 OR L773:1944 8007 ;pers:(Lavraud B.)"

Search: L773:0094 8276 OR L773:1944 8007 > Lavraud B.

  • Result 1-10 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • André, Mats, et al. (author)
  • Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause
  • 2016
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:13, s. 6705-6712
  • Journal article (peer-reviewed)abstract
    • Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
  •  
2.
  • Chen, L. -J, et al. (author)
  • Electron Diffusion Regions in Magnetotail Reconnection Under Varying Guide Fields
  • 2019
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 46:12, s. 6230-6238
  • Journal article (peer-reviewed)abstract
    • Kinetic structures of electron diffusion regions (EDRs) under finite guide fields in magnetotail reconnection are reported. The EDRs with guide fields 0.14–0.5 (in unit of the reconnecting component) are detected by the Magnetospheric Multiscale spacecraft. The key new features include the following: (1) cold inflowing electrons accelerated along the guide field and demagnetized at the magnetic field minimum while remaining a coherent population with a low perpendicular temperature, (2) wave fluctuations generating strong perpendicular electron flows followed by alternating parallel flows inside the reconnecting current sheet under an intermediate guide field, and (3) gyrophase bunched electrons with high parallel speeds leaving the X-line region. The normalized reconnection rates for the three EDRs range from 0.05 to 0.3. The measurements reveal that finite guide fields introduce new mechanisms to break the electron frozen-in condition.
  •  
3.
  • Eastwood, J. P., et al. (author)
  • Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS
  • 2016
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4716-4724
  • Journal article (peer-reviewed)abstract
    • New Magnetospheric Multiscale (MMS) observations of small-scale (similar to 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (similar to 22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.
  •  
4.
  • Ergun, R. E., et al. (author)
  • Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause
  • 2017
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:7, s. 2978-2986
  • Journal article (peer-reviewed)abstract
    • Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E-||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude (similar to 100mV/m) E-|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
  •  
5.
  • Ergun, R. E., et al. (author)
  • Magnetic Reconnection, Turbulence, and Particle Acceleration : Observations in the Earth's Magnetotail
  • 2018
  • In: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:8, s. 3338-3347
  • Journal article (peer-reviewed)abstract
    • We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally >100 keV, and strong variation. There are numerous occurrences of |E| >100 mV/m including occurrences of large potentials (>1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (fci) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above fci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.
  •  
6.
  • Ergun, R. E., et al. (author)
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
  • 2016
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5626-5634
  • Journal article (peer-reviewed)abstract
    • We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
  •  
7.
  • Eriksson, S., et al. (author)
  • Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves
  • 2016
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5606-5615
  • Journal article (peer-reviewed)abstract
    • The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
  •  
8.
  • Farrugia, C. J., et al. (author)
  • Magnetospheric Multiscale Mission observations and non-force free modeling of a flux transfer event immersed in a super-Alfvenic flow
  • 2016
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:12, s. 6070-6077
  • Journal article (peer-reviewed)abstract
    • We analyze plasma, magnetic field, and electric field data for a flux transfer event (FTE) to highlight improvements in our understanding of these transient reconnection signatures resulting from high-resolution data. The similar to 20 s long, reverse FTE, which occurred south of the geomagnetic equator near dusk, was immersed in super-Alfvenic flow. The field line twist is illustrated by the behavior of flows parallel/perpendicular to the magnetic field. Four-spacecraft timing and energetic particle pitch angle anisotropies indicate a flux rope (FR) connected to the Northern Hemisphere and moving southeast. The flow forces evidently overcame the magnetic tension. The high-speed flows inside the FR were different from those outside. The external flows were perpendicular to the field as expected for draping of the external field around the FR. Modeling the FR analytically, we adopt a non-force free approach since the current perpendicular to the field is nonzero. It reproduces many features of the observations.
  •  
9.
  • Fuselier, S. A., et al. (author)
  • Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection
  • 2019
  • In: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:12, s. 6204-6213
  • Journal article (peer-reviewed)abstract
    • When the interplanetary magnetic field is northward for a period of time, O+ from the high-latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual-lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+-rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high-shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high-latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.
  •  
10.
  • Gingell, I, et al. (author)
  • Observations of Magnetic Reconnection in the Transition Region of Quasi-Parallel Shocks
  • 2019
  • In: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:3, s. 1177-1184
  • Journal article (peer-reviewed)abstract
    • Using observations of Earth's bow shock by the Magnetospheric Multiscale mission, we show for the first time that active magnetic reconnection is occurring at current sheets embedded within the quasi-parallel shock's transition layer. We observe an electron jet and heating but no ion response, suggesting we have observed an electron-only mode. The lack of ion response is consistent with simulations showing reconnection onset on sub-ion time scales. We also discuss the impact of electron heating in shocks via reconnection.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view