SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0094 8276 OR L773:1944 8007 ;pers:(Pollock C.)"

Sökning: L773:0094 8276 OR L773:1944 8007 > Pollock C.

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • André, Mats, et al. (författare)
  • Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:13, s. 6705-6712
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
  •  
2.
  • Burch, J. L., et al. (författare)
  • Localized Oscillatory Energy Conversion in Magnetopause Reconnection
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:3, s. 1237-1245
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized (similar to 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J . E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
  •  
3.
  • Chen, L. -J, et al. (författare)
  • Electron Diffusion Regions in Magnetotail Reconnection Under Varying Guide Fields
  • 2019
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 46:12, s. 6230-6238
  • Tidskriftsartikel (refereegranskat)abstract
    • Kinetic structures of electron diffusion regions (EDRs) under finite guide fields in magnetotail reconnection are reported. The EDRs with guide fields 0.14–0.5 (in unit of the reconnecting component) are detected by the Magnetospheric Multiscale spacecraft. The key new features include the following: (1) cold inflowing electrons accelerated along the guide field and demagnetized at the magnetic field minimum while remaining a coherent population with a low perpendicular temperature, (2) wave fluctuations generating strong perpendicular electron flows followed by alternating parallel flows inside the reconnecting current sheet under an intermediate guide field, and (3) gyrophase bunched electrons with high parallel speeds leaving the X-line region. The normalized reconnection rates for the three EDRs range from 0.05 to 0.3. The measurements reveal that finite guide fields introduce new mechanisms to break the electron frozen-in condition.
  •  
4.
  • Eastwood, J. P., et al. (författare)
  • Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4716-4724
  • Tidskriftsartikel (refereegranskat)abstract
    • New Magnetospheric Multiscale (MMS) observations of small-scale (similar to 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (similar to 22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.
  •  
5.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5626-5634
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
  •  
6.
  • Eriksson, S., et al. (författare)
  • Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5606-5615
  • Tidskriftsartikel (refereegranskat)abstract
    • The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
  •  
7.
  • Farrugia, C. J., et al. (författare)
  • Magnetospheric Multiscale Mission observations and non-force free modeling of a flux transfer event immersed in a super-Alfvenic flow
  • 2016
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:12, s. 6070-6077
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze plasma, magnetic field, and electric field data for a flux transfer event (FTE) to highlight improvements in our understanding of these transient reconnection signatures resulting from high-resolution data. The similar to 20 s long, reverse FTE, which occurred south of the geomagnetic equator near dusk, was immersed in super-Alfvenic flow. The field line twist is illustrated by the behavior of flows parallel/perpendicular to the magnetic field. Four-spacecraft timing and energetic particle pitch angle anisotropies indicate a flux rope (FR) connected to the Northern Hemisphere and moving southeast. The flow forces evidently overcame the magnetic tension. The high-speed flows inside the FR were different from those outside. The external flows were perpendicular to the field as expected for draping of the external field around the FR. Modeling the FR analytically, we adopt a non-force free approach since the current perpendicular to the field is nonzero. It reproduces many features of the observations.
  •  
8.
  • Graham, Daniel B., et al. (författare)
  • Electron currents and heating in the ion diffusion region of asymmetric reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:10, s. 4691-4700
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter the structure of the ion diffusion region of magnetic reconnection at Earth's magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
  •  
9.
  • Han, D. -S, et al. (författare)
  • Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground all-sky camera
  • 2017
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:16, s. 8130-8139
  • Tidskriftsartikel (refereegranskat)abstract
    • Structured diffuse auroras are often observed near magnetic local noon (MLN), but their generation mechanisms are poorly understood. We have found that two types of structured diffuse auroras with obviously different dynamical properties often coexist near MLN. One type usually drifts from low to high latitude with higher speed and shows pulsation. The other type is always adjacent to the discrete aurora oval and drifts together with nearby discrete aurora with much lower speed. Using coordinated observations from MMS and ground all-sky imagers, we found that the two types of diffuse auroras are well correlated with number density increase of O+ (from the ionosphere) and of He2+ (from magnetosheath) ions, respectively. These observations indicate that mangetosheath particles penetrated into the magnetosphere also can play an important role for producing the dayside diffuse aurora. In addition, for the first time, electron cyclotron harmonic waves are observed associated with dayside diffuse aurora.
  •  
10.
  • Huang, S. Y., et al. (författare)
  • MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:15, s. 7850-7858
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 d(i), where d(i) is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy