SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0094 8276 OR L773:1944 8007 ;pers:(Pollock C. J.)"

Sökning: L773:0094 8276 OR L773:1944 8007 > Pollock C. J.

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burch, J. L., et al. (författare)
  • Localized Oscillatory Energy Conversion in Magnetopause Reconnection
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:3, s. 1237-1245
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized (similar to 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J . E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
  •  
2.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5626-5634
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
  •  
3.
  • Eriksson, S., et al. (författare)
  • Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5606-5615
  • Tidskriftsartikel (refereegranskat)abstract
    • The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
  •  
4.
  • Graham, Daniel B., et al. (författare)
  • Electron currents and heating in the ion diffusion region of asymmetric reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:10, s. 4691-4700
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter the structure of the ion diffusion region of magnetic reconnection at Earth's magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
  •  
5.
  • Han, D. -S, et al. (författare)
  • Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground all-sky camera
  • 2017
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:16, s. 8130-8139
  • Tidskriftsartikel (refereegranskat)abstract
    • Structured diffuse auroras are often observed near magnetic local noon (MLN), but their generation mechanisms are poorly understood. We have found that two types of structured diffuse auroras with obviously different dynamical properties often coexist near MLN. One type usually drifts from low to high latitude with higher speed and shows pulsation. The other type is always adjacent to the discrete aurora oval and drifts together with nearby discrete aurora with much lower speed. Using coordinated observations from MMS and ground all-sky imagers, we found that the two types of diffuse auroras are well correlated with number density increase of O+ (from the ionosphere) and of He2+ (from magnetosheath) ions, respectively. These observations indicate that mangetosheath particles penetrated into the magnetosphere also can play an important role for producing the dayside diffuse aurora. In addition, for the first time, electron cyclotron harmonic waves are observed associated with dayside diffuse aurora.
  •  
6.
  • Huang, S. Y., et al. (författare)
  • MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:15, s. 7850-7858
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 d(i), where d(i) is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma.
  •  
7.
  • Huang, S. Y., et al. (författare)
  • Observations of Flux Ropes With Strong Energy Dissipation in the Magnetotail
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:2, s. 580-589
  • Tidskriftsartikel (refereegranskat)abstract
    • An ion-scale flux rope (FR), embedded in a high-speed electron flow (possibly an electron vortex), is investigated in the magnetotail using observations from the Magnetospheric Multiscale (MMS) spacecraft. Intense electric field and current and abundant waves are observed in the exterior and interior regions of the FR. Comparable parallel and perpendicular currents in the interior region imply that the FR has a non-force-free configuration. Electron demagnetization occurs in some subregions of the FR. It is surprising that strong dissipation (I x E' up to 2,000 pW/m(3)) occurs in the center of the FR without signatures of secondary reconnection or coalescence of two FRs, implying that FR may provide another important channel for energy dissipation in space plasmas. These features indicate that the observed FR is still highly dynamical, and hosts multiscale coupling processes, even though the FR has a very large scale and is far away from the reconnection site. Plain Language Summary: Flux ropes, 3-D helical magnetic structures, in which magnetic field lines twist with each other, play an important role in the macroscopic and microscopic physical process during magnetic reconnection. Most of previous studies focused on the flux ropes in the reconnection region. However, some physical process inside macroscopic flux ropes far away from the reconnection site in the magnetotail is still unclear due to the lack of high time resolution data. In this letter, thanks to the unprecedented high time resolution data of the Magnetospheric Multiscale (MMS) mission, we report an ion-scale flux rope and study its dynamics. Our observations demonstrate that the observed flux rope is still highly dynamical, and hosting multiscale coupling processes and strong energy dissipation, even though the flux rope has very large scale and is far away from the reconnection site.
  •  
8.
  • Hwang, K. -J, et al. (författare)
  • Electron Vorticity Indicative of the Electron Diffusion Region of Magnetic Reconnection
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:12, s. 6287-6296
  • Tidskriftsartikel (refereegranskat)abstract
    • While vorticity defined as the curl of the velocity has been broadly used in fluid and plasma physics, this quantity has been underutilized in space physics due to low time resolution observations. We report Magnetospheric Multiscale (MMS) observations of enhanced electron vorticity in the vicinity of the electron diffusion region of magnetic reconnection. On 11 July 2017 MMS traversed the magnetotail current sheet, observing tailward-to-earthward outflow reversal, current-carrying electron jets in the direction along the electron meandering motion or out-of-plane direction, agyrotropic electron distribution functions, and dissipative signatures. At the edge of the electron jets, the electron vorticity increased with magnitudes greater than the electron gyrofrequency. The out-of-plane velocity shear along distance from the current sheet leads to the enhanced vorticity. This, in turn, contributes to the magnetic field perturbations observed by MMS. These observations indicate that electron vorticity can act as a proxy for delineating the electron diffusion region of magnetic reconnection.
  •  
9.
  • Hwang, K. -J, et al. (författare)
  • Magnetospheric Multiscale mission observations of the outer electron diffusion region
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:5, s. 2049-2059
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents Magnetospheric Multiscale mission (MMS) observations of the exhaust region in the vicinity of the central reconnection site in Earth's magnetopause current sheet. High-time-resolution measurements of field and particle distributions enable us to explore the fine structure of the diffusion region near the X line. Ions are decoupled from the magnetic field throughout the entire current sheet crossing. Electron jets flow downstream from the X line at speeds greater than the ExB drift velocity. At/around the magnetospheric separatrix, large-amplitude electric fields containing field-aligned components accelerate electrons along the magnetic field toward the X line. Near the neutral sheet, crescent-shaped electron distributions appear coincident with (1) an out-of-plane electric field whose polarity is opposite to that of the reconnection electric field and (2) the energy transfer from bulk kinetic to field energy. The observations indicate that MMS passed through the edge of an elongated electron diffusion region (EDR) or the outer EDR in the exhaust region.
  •  
10.
  • Khotyaintsev, Yuri V., et al. (författare)
  • Electron jet of asymmetric reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5571-5580
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E-vertical bar amplitudes reaching up to 300mVm(-1) and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy