SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0143 3334 OR L773:1460 2180 ;hsvcat:1"

Search: L773:0143 3334 OR L773:1460 2180 > Natural sciences

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Helleday, Thomas (author)
  • Homologous recombination in cancer development, treatment and development of drug resistance
  • 2010
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 31:6, s. 955-960
  • Journal article (peer-reviewed)abstract
    • Although DNA double-strand breaks (DSBs) are substrates for homologous recombination (HR) repair, it is becoming apparent that DNA lesions produced at replication forks, for instance by many anticancer drugs, are more significant substrates for HR repair. Cells defective in HR are hypersensitive to a wide variety of anticancer drugs, including those that do not produce DSBs. Several cancers have mutations in or epigenetically silenced HR genes, which explain the genetic instability that drives cancer development. There are an increasing number of reports suggesting that mutation or epigenetic silencing of HR genes explains the sensitivity of cancers to current chemotherapy treatments. Furthermore, there are also many examples of re-expression of HR genes in tumours to explain drug resistance. Emerging data suggest that there are several different subpathways of HR, which can compensate for each other. Unravelling the overlapping pathways in HR showed that BRCA1- and BRCA2-defective cells rely on the PARP protein for survival. This synthetic lethal interaction is now being exploited for selective treatment of BRCA1- and BRCA2-defective cancers with PARP inhibitors. Here, I discuss the diversity of HR and how it impacts on cancer with a particular focus on how HR can be exploited in future anticancer strategies.
  •  
2.
  •  
3.
  • Chien, Ming-Hsien, et al. (author)
  • Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway.
  • 2009
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 30:12, s. 2005-13
  • Journal article (peer-reviewed)abstract
    • Vascular endothelial growth factor (VEGF)-C is recognized as a tumor lymphangiogenic factor based on the effects of activated VEGF-R3 on lymphatic endothelial cells. Many tumor cells express VEGF-R3 but the function of this receptor in tumor cells is largely unknown. It has been reported that the VEGF-C/VEGF-R3 axis is activated in subsets of leukemia patients. Herein, we have shown that VEGF-C induces angiogenic activity in the tube formation assay invitro and Matrigel plug assay in vivo by upregulating an angiogenic factor, cyclooxygenase-2 (COX-2), through VEGF-R3 in the human acute myeloid leukemia (AML) cell line, THP-1. COX-2 induction by VEGF-C was also observed in other VEGF-R3(+) human AML cell lines (U937 and HL60). Moreover, immunohistochemical analysis of bone marrow specimens of 37 patients diagnosed with AML revealed that VEGF-C expression in specimens was associated with the expression of COX-2 (P < 0.001). The manner by which signaling pathways transduced by VEGF-C is responsible for COX-2 upregulation was further investigated. Blocking the p42/44 mitogen-activated protein kinase (MAPK) pathway with the MAPK kinase inhibitor, PD 98059, failed to inhibit VEGF-C-mediated COX-2 expression. However, VEGF-C-induced COX-2 upregulation was effectively abolished by overexpression of dominant-negative c-Jun N-terminal kinase (JNK) or treatment with the JNK inhibitor, SP 600125. VEGF-C induced JNK-dependent nuclear translocation of c-Jun. Furthermore, chromatin immunoprecipitation and reporter assays revealed that VEGF-C enhanced c-Jun binding to the cyclic adenosine 3',5'-monophosphate-response element of the COX-2 promoter and induced COX-2 expression. In sum, the data herein highlight the pathogenic role of VEGF-C in leukemia via regulation of angiogenesis through upregulation of COX-2.
  •  
4.
  • Engström, Wilhelm, et al. (author)
  • The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling
  • 2015
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 36, s. S38-S60
  • Research review (peer-reviewed)abstract
    • The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
  •  
5.
  • Eriksson, Staffan, et al. (author)
  • Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead
  • 2015
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 36, s. S254-S296
  • Research review (peer-reviewed)abstract
    • Low-dose exposures to common environmental chemicals that are deemed safe individually may be combining to instigate carcinogenesis, thereby contributing to the incidence of cancer. This risk may be overlooked by current regulatory practices and needs to be vigorously investigated.Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view