SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0143 3334 OR L773:1460 2180 ;lar1:(kth)"

Sökning: L773:0143 3334 OR L773:1460 2180 > Kungliga Tekniska Högskolan

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aydoğdu, Eylem, et al. (författare)
  • MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer.
  • 2012
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 33:8, s. 1502-11
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNAs) play pivotal roles in stem cell biology, differentiation and oncogenesis and are of high interest as potential breast cancer therapeutics. However, their expression and function during normal mammary differentiation and in breast cancer remain to be elucidated. In order to identify which miRNAs are involved in mammary differentiation, we thoroughly investigated miRNA expression during functional differentiation of undifferentiated, stem cell-like, murine mammary cells using two different large-scale approaches followed by qPCR. Significant changes in expression of 21 miRNAs were observed in repeated rounds of mammary cell differentiation. The majority, including the miR-200 family and known tumor suppressor miRNAs, was upregulated during differentiation. Only four miRNAs, including oncomiR miR-17, were downregulated. Pathway analysis indicated complex interactions between regulated miRNA clusters and major pathways involved in differentiation, proliferation and stem cell maintenance. Comparisons with human breast cancer tumors showed the gene profile from the undifferentiated, stem-like stage clustered with that of poor-prognosis breast cancer. A common nominator in these groups was the E2F pathway, which was overrepresented among genes targeted by the differentiation-induced miRNAs. A subset of miRNAs could further discriminate between human non-cancer and breast cancer cell lines, and miR-200a/miR-200b, miR-146b and miR-148a were specifically downregulated in triple-negative breast cancer cells. We show that miR-200a/miR-200b can inhibit epithelial-mesenchymal transition (EMT)-characteristic morphological changes in undifferentiated, non-tumorigenic mammary cells. Our studies propose EphA2 as a novel and important target gene for miR-200a. In conclusion, we present evidentiary data on how miRNAs are involved in mammary cell differentiation and indicate their related roles in breast cancer.
  •  
2.
  • Dahlman-Wright, Karin, et al. (författare)
  • Interplay between AP-1 and estrogen receptor α in regulating gene expression and proliferation networks in breast cancer cells
  • 2012
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 33:9, s. 1684-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor α (ERα) is a ligand-dependent transcription factor that plays an important role in breast cancer. Estrogen-dependent gene regulation by ERα can be mediated by interaction with other DNA-binding proteins, such as activator protein-1 (AP-1). The nature of such interactions in mediating the estrogen response in breast cancer cells remains unclear. Here we show that knockdown of c-Fos, a component of the transcription factor AP-1, attenuates the expression of 37% of all estrogen-regulated genes, suggesting that c-Fos is a fundamental factor for ERα-mediated transcription. Additionally, knockdown of c-Fos affected the expression of a number of genes that were not regulated by estrogen. Pathway analysis reveals that silencing of c-Fos downregulates an E2F1-dependent proproliferative gene network. Thus, modulation of the E2F1 pathway by c-Fos represents a novel mechanism by which c-Fos enhances breast cancer cell proliferation. Furthermore, we show that c-Fos and ERα can cooperate in regulating E2F1 gene expression by binding to regulatory elements in the E2F1 promoter. To start to dissect the molecular details of the cross talk between AP-1 and estrogen signaling, we identify a novel ERα/AP-1 target, PKIB (cAMP-dependent protein kinase inhibitor-β), which is overexpressed in ERα-positive breast cancer tissues. Knockdown of PKIB results in robust growth suppression of breast cancer cells. Collectively, our findings support c-Fos as a critical factor that governs estrogen-dependent gene expression and breast cancer proliferation programs.
  •  
3.
  • Edvardsson, Karin, et al. (författare)
  • Estrogen receptor β expression induces changes in the microRNA pool in human colon cancer cells
  • 2013
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 34:7, s. 1431-41
  • Tidskriftsartikel (refereegranskat)abstract
    • There is epidemiological, animal and in vitro evidence that estrogen receptor β (ERβ) can mediate protective effects against colon cancer, but the mechanism is not completely understood. Previous research has indicated critical pathways whereby ERβ acts in an antitumorigenic fashion. In this study, we investigate ERβ's impact on the microRNA (miRNA) pool in colon cancer cells using large-scale genomic approaches, bioinformatics and focused functional studies. We detect and confirm 27 miRNAs to be significantly changed following ERβ expression in SW480 colon cancer cells. Among these, the oncogenic miR-17-92 cluster and miR-200a/b are strongly downregulated. Using target prediction and anticorrelation to gene expression data followed by focused mechanistic studies, we demonstrate that repression of miR-17 is a secondary event following ERβ's downregulatory effect on MYC. We show that re-introduction of miR-17 can reverse the antiproliferative effects of ERβ. The repression of miR-17 also influences cell death upon DNA damage and mediates regulation of NCOA3 (SRC-3) and CLU in colon cancer cells. We further determine that the downregulation of miR-200a/b mediates increased ZEB1 while decreasing E-cadherin levels in ERβ-expressing colon cancer cells. Changes in these genes correspond to significant alterations in morphology and migration. Our work contributes novel data of ERβ and miRNA in the colon. Elucidating the mechanism of ERβ and biomarkers of its activity has significant potential to impact colon cancer prevention and treatment.
  •  
4.
  • Toh, Soo Ting, et al. (författare)
  • Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations
  • 2013
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 34:4, s. 787-798
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic hepatitis B virus (HBV) infection is epidemiologically associated with hepatocellular carcinoma (HCC), but its role in HCC remains poorly understood due to technological limitations. In this study, we systematically characterize HBV in HCC patients. HBV sequences were enriched from 48 HCC patients using an oligo-bead-based strategy, pooled together and sequenced using the FLX-Genome-Sequencer. In the tumors, preferential integration of HBV into promoters of genes (P < 0.001) and significant enrichment of integration into chromosome 10 (P < 0.01) were observed. Integration into chromosome 10 was significantly associated with poorly differentiated tumors (P < 0.05). Notably, in the tumors, recurrent integration into the promoter of the human telomerase reverse transcriptase (TERT) gene was found to correlate with increased TERT expression. The preferred region within the HBV genome involved in integration and viral structural alteration is at the 3'-end of hepatitis B virus X protein (HBx), where viral replication/transcription initiates. Upon integration, the 3'-end of the HBx is often deleted. HBxhuman chimeric transcripts, the most common type of chimeric transcripts, can be expressed as chimeric proteins. Sequence variation resulting in non-conservative amino acid substitutions are commonly observed in HBV genome. This study highlights HBV as highly mutable in HCC patients with preferential regions within the host and virus genome for HBV integration/structural alterations.
  •  
5.
  • Tsouko, Efrosini, et al. (författare)
  • miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene
  • 2015
  • Ingår i: Carcinogenesis. - : Oxford University Press. - 0143-3334 .- 1460-2180. ; 36:9, s. 1051-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • Triple-negative breast cancer (TNBC) is characterized by aggressiveness and affects 10-20% of breast cancer patients. Since TNBC lacks expression of ER alpha, PR and HER2, existing targeted treatments are not effective and the survival is poor. In this study, we demonstrate that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration. We show that EPHA2 expression is correlated with poor survival specifically in basal-like breast cancer and that its expression is repressed by miR-200a through direct interaction with the 3'UTR of EPHA2. This regulation subsequently affects the downstream activation of AMP-activated protein kinase (AMPK) and results in decreased cell migration of TNBC. We establish that miR-200a directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway. The miR-200a-EPHA2 axis is a novel mechanism highlighting the possibility of utilizing miR-200a delivery to target TNBC metastases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy