SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0160 4120 OR L773:1873 6750 ;pers:(Brunekreef Bert)"

Search: L773:0160 4120 OR L773:1873 6750 > Brunekreef Bert

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Burte, Emilie, et al. (author)
  • Association between air pollution and rhinitis incidence in two European cohorts
  • 2018
  • In: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 115, s. 257-266
  • Journal article (peer-reviewed)abstract
    • The association between air pollution and rhinitis is not well established.Aim: The aim of this longitudinal analysis was to study the association between modeled air pollution at the subjects' home addresses and self-reported incidence of rhinitis.Methods: We used data from 1533 adults from two multicentre cohorts' studies (EGEA and ECRHS). Rhinitis incidence was defined as reporting rhinitis at the second follow-up (2011 to 2013) but not at the first follow-up (2000 to 2007). Annual exposure to NO2, PM10 and PM2.5 at the participants' home addresses was estimated using land-use regression models developed by the ESCAPE project for the 2009-2010 period. Incidence rate ratios (IRR) were computed using Poisson regression. Pooled analysis, analyses by city and meta-regression testing for heterogeneity were carried out.Results: No association between long-term air pollution exposure and incidence of rhinitis was found (adjusted IRR (aIRR) for an increase of 10 mu g center dot m(-3) of NO2: 1.00 [0.91-1.09], for an increase of 5 mu g center dot m(-3) of PM2.5: 0.88 [0.73-1.04]). Similar results were found in the two-pollutant model (aIRR for an increase of 10 mu g center dot m(-3) of NO2: 1.01 [0.87-1.17], for an increase of 5 mu g center dot m(-3) of PM2.5: 0.87 [0.68-1.08]). Results differed depending on the city, but no regional pattern emerged for any of the pollutants.Conclusions: This study did not find any consistent evidence of an association between long-term air pollution and incident rhinitis.
  •  
2.
  • Cole-Hunter, Thomas, et al. (author)
  • Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort : An ELAPSE study
  • 2023
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 171
  • Journal article (peer-reviewed)abstract
    • Background: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson’s Disease (PD) remains limited.Objective: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts.Methods: Within the project ‘Effects of Low-Level Air Pollution: A Study in Europe’ (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders.Results: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01–1.55), NO2 (1.13; 0.95–1.34 per 10 µg/m3), and BC (1.12; 0.94–1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58–0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95–1.62) or BC (1.28; 0.96–1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5.Conclusion: Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality.
  •  
3.
  • de Hoogh, Kees, et al. (author)
  • Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies
  • 2014
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 73, s. 382-392
  • Journal article (peer-reviewed)abstract
    • Background: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. Objectives: Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. Methods: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. Results: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519(4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74(0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. Conclusions: LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5.
  •  
4.
  • Hvidtfeldt, Ulla Arthur, et al. (author)
  • Long-term low-level ambient air pollution exposure and risk of lung cancer - A pooled analysis of 7 European cohorts
  • 2021
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Journal article (peer-reviewed)abstract
    • Background/aim: Ambient air pollution has been associated with lung cancer, but the shape of the exposure-response function - especially at low exposure levels - is not well described. The aim of this study was to address the relationship between long-term low-level air pollution exposure and lung cancer incidence.Methods: The Effects of Low-level Air Pollution: a Study in Europe (ELAPSE) collaboration pools seven cohorts from across Europe. We developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and ozone (O-3) to assign exposure to cohort participants' residential addresses in 100 m by 100 m grids. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socioeconomic status). We fitted linear models, linear models in subsets, Shape-Constrained Health Impact Functions (SCHIF), and natural cubic spline models to assess the shape of the association between air pollution and lung cancer at concentrations below existing standards and guidelines.Results: The analyses included 307,550 cohort participants. During a mean follow-up of 18.1 years, 3956 incident lung cancer cases occurred. Median (Q1, Q3) annual (2010) exposure levels of NO2, PM2.5, BC and O-3 (warm season) were 24.2 mu g/m(3) (19.5, 29.7), 15.4 mu g/m(3) (12.8, 17.3), 1.6 10(-5)m(-1) (1.3, 1.8), and 86.6 mu g/m(3) (78.5, 92.9), respectively. We observed a higher risk for lung cancer with higher exposure to PM2.5 (HR: 1.13, 95% CI: 1.05, 1.23 per 5 mu g/m(3)). This association was robust to adjustment for other pollutants. The SCHIF, spline and subset analyses suggested a linear or supra-linear association with no evidence of a threshold. In subset analyses, risk estimates were clearly elevated for the subset of subjects with exposure below the EU limit value of 25 mu g/m(3). We did not observe associations between NO2, BC or O-3 and lung cancer incidence.Conclusions: Long-term ambient PM2.5 exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.
  •  
5.
  • Liu, Shuo, et al. (author)
  • Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease : The ELAPSE project
  • 2021
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Journal article (peer-reviewed)abstract
    • Background: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent.Objectives: We examined the association between long-term exposure to low-level air pollution and COPD incidence.Methods: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 mu m (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models.Results: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 mu g/m(3) for PM2.5, 1.11 (1.06, 1.16) per 10 mu g/m(3) for NO2, and 1.11 (1.06, 1.15) per 0.5 10(-5) m(-1) for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC.Conclusions: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.
  •  
6.
  • Temam, Sofia, et al. (author)
  • Socioeconomic position and outdoor nitrogen dioxide (NO2) exposure in Western Europe : a multi-city analysis
  • 2017
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 101, s. 117-124
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Inconsistent associations between socioeconomic position (SEP) and outdoor air pollution have been reported in Europe, but methodological differences prevent any direct between-study comparison.OBJECTIVES: Assess and compare the association between SEP and outdoor nitrogen dioxide (NO2) exposure as a marker of traffic exhaust, in 16 cities from eight Western European countries.METHODS: Three SEP indicators, two defined at individual-level (education and occupation) and one at neighborhood-level (unemployment rate) were assessed in three European multicenter cohorts. NO2 annual concentration exposure was estimated at participants' addresses with land use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE; http://www.escapeproject.eu/). Pooled and city-specific linear regressions were used to analyze associations between each SEP indicator and NO2. Heterogeneity across cities was assessed using the Higgins' I-squared test (I(2)).RESULTS: The study population included 5692 participants. Pooled analysis showed that participants with lower individual-SEP were less exposed to NO2. Conversely, participants living in neighborhoods with higher unemployment rate were more exposed. City-specific results exhibited strong heterogeneity (I(2)>76% for the three SEP indicators) resulting in variation of the individual- and neighborhood-SEP patterns of NO2 exposure across cities. The coefficients from a model that included both individual- and neighborhood-SEP indicators were similar to the unadjusted coefficients, suggesting independent associations.CONCLUSIONS: Our study showed for the first time using homogenized measures of outcome and exposure across 16 cities the important heterogeneity regarding the association between SEP and NO2 in Western Europe. Importantly, our results showed that individual- and neighborhood-SEP indicators capture different aspects of the association between SEP and exposure to air pollution, stressing the importance of considering both in air pollution health effects studies.
  •  
7.
  • Wang, Meng, et al. (author)
  • Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts : Results from the ESCAPE and TRANSPHORM projects
  • 2014
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 66, s. 97-106
  • Journal article (peer-reviewed)abstract
    • Background: Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. Aims: The aim of this study was to examine the association of PM composition with cardiovascular mortality. Methods: We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10 pm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects metaanalysis was used to calculate combined effect estimates. Results: The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% Cl: 0.93-1.47), and S in PM2.5 (1.08,95% Cl: 0.95-1.22) and PM10 (1.09,95% Cl: 0.90-132). Conclusion: In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality.
  •  
8.
  • Weinmayr, Gudrun, et al. (author)
  • Particulate matter air pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE)
  • 2018
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 120, s. 163-171
  • Journal article (peer-reviewed)abstract
    • Introduction: Previous analysis from the large European multicentre ESCAPE study showed an association of ambient particulate matter < 2.5 mu m (PM2.5) air pollution exposure at residence with the incidence of gastric cancer. It is unclear which components of PM are most relevant for gastric and also upper aerodigestive tract (UADT) cancer and some of them may not be strongly correlated with PM mass. We evaluated the association between long-term exposure to elemental components of PM2.5 and PM10 and gastric and UADT cancer incidence in European adults.Methods: Baseline addresses of individuals were geocoded and exposure was assessed by land-use regression models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; sulphur (S) indicating long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and industry; silicon (Si) for crustal material and potassium (K) for biomass burning. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses.Results: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-up of 14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer. The combined hazard ratio (HR) for an increase of 200 ng/m(3) of PM2.5_S was 1.92 (95%-confidence interval (95%-CI) 1.13; 3.27) for gastric cancer, with no indication of heterogeneity between cohorts (I-2= 0%), and 1.63 (95%-CI 0.88; 3.01) for PM2.5_Zn (I-2= 70%). For the other elements in PM2.5 and all elements in PM10 including PM10_S, non-significant HRs between 0.78 and 1.21 with mostly wide CIs were seen. No association was found between any of the elements and UADT cancer. The HR for PM2.5_S and gastric cancer was robust to adjustment for additional factors, including diet, and restriction to study participants with stable addresses over follow-up resulted in slightly higher effect estimates with a decrease in precision. In a two-pollutant model, the effect estimate for total PM2.5 decreased whereas that for PM2.5_S was robust.Conclusion: This large multicentre cohort study shows a robust association between gastric cancer and long-term exposure to PM2.5 S but not PM10 S, suggesting that S in PM2.5 or correlated air pollutants may contribute to the risk of gastric cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view