SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0168 1605 OR L773:1879 3460 ;pers:(Aronsson Kristina)"

Sökning: L773:0168 1605 OR L773:1879 3460 > Aronsson Kristina

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aronsson, Kristina, et al. (författare)
  • Growth of pulsed electric field exposed Escherichia coli in relation to inactivation and environmental factors
  • 2004
  • Ingår i: International Journal of Food Microbiology. - 0168-1605 .- 1879-3460. ; 93:1, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsed electric fields (PEF) have been proven to inactivate microorganisms during nonthermal conditions and have the potential to replace thermal processing as a method for food preservation. However, there is a need to understand the recovery and growth of survivors and potentially injured microorganisms following PEF processing. The purpose of this investigation was to study the growth of Escherichia coli at 10°C following exposure to electrical field strengths (15, 22.5 and 30 kV/cm) in relation to inactivation and the amount of potentially sublethally injured cells. One medium was used as both a treatment medium and an incubation medium, to study the influence of environmental factors on the inactivation and the growth of the surviving population. The pH (5.0, 6.0 and 7.0) and water activity (1.00, 0.985 and 0.97) of the medium was varied by adding HCl and glycerol, respectively. Growth was followed continuously by measuring the optical density. The time-to-detection (td) and the maximum specific growth rate (?max) were calculated from these data. Results showed that the PEF process did not cause any obvious sublethal injury to the E. coli cells. The number of survivors was a consequence of the combination of electrical field strength and environmental factors, with pH being the most prominent. Interestingly, the ?max of subsequent growth was influenced by the applied electrical field strength during the process, with an increased ?max at more intense electrical field strengths. In addition, the ?max was also influenced by the pH and water activity. The td, which could theoretically be considered as an increase in shelf life, was found to depend on a complex correlation between electrical field strength, pH and water activity. That could be explained by the fact that the td is a combination of the number of survivors, the recovery of sublethal injured cells and the growth rate of the survivors. © 2003 Published by Elsevier B.V.
  •  
2.
  • Aronsson, Kristina, et al. (författare)
  • Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing
  • 2005
  • Ingår i: International Journal of Food Microbiology. - : Elsevier BV. - 0168-1605 .- 1879-3460. ; 99:1, s. 19-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane permeabilization, caused by pulsed electric field (PEF) processing of microbial cells, was investigated by measurement of propidium iodide (PI) uptake with flow cytometry. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae was determined by viable counts, and leakage of intracellular compounds, such as ATP and UV-absorbing substances, was measured in the extracellular environment. Electrical field strength and pulse duration influenced membrane permeabilization of all three tested organisms of which S. cerevisiae was the most PEF sensitive, followed by E. coli and L. innocua. It was shown by viable counts, PI uptake and leakage of intracellular compounds that L. innocua was the most resistant. Increased inactivation corresponded to greater numbers of permeabilized cells, which were reflected by increased PI uptake and larger amounts of intracellular compounds leaking from cells. For E. coli and L. innocua, a linear relationship was observed between the number of inactivated cells (determined as CFU) and cells with permeated membranes (determined by PI uptake), with higher number of inactivated cells than permeated cells. Increased leakage of intracellular compounds with increasing treatment severity provided further evidence that cells were permeabilized. For S. cerevisiae, there was higher PI uptake after PEF treatments, although very little or no inactivation was observed. Results suggest that E. coli and L. innocua cells, which took up PI, lost their ability to multiply, whereas cells of S. cerevisiae, which also took up PI, were not necessarily lethally permeabilized. © 2004 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Rönner, Ulf (2)
Borch, Elisabeth (2)
Stenlof, B. (1)
Lärosäte
Chalmers tekniska högskola (1)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy